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Efficient Relaxations for Dense CRFs with Sparse Higher-Order Potentials\ast 
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Abstract. Dense conditional random fields (CRFs) have become a popular framework for modeling several
problems in computer vision such as stereo correspondence and multiclass semantic segmentation. By
modeling long-range interactions, dense CRFs provide a labeling that captures finer detail than their
sparse counterparts. Currently, the state-of-the-art algorithm performs mean-field inference using a
filter-based method but fails to provide a strong theoretical guarantee on the quality of the solution.
A question naturally arises as to whether it is possible to obtain a maximum a posteriori (MAP)
estimate of a dense CRF using a principled method. Within this paper, we show that this is indeed
possible. Specifically, we will show that, by using a filter-based method, continuous relaxations of
the MAP problem can be optimized efficiently using state-of-the-art algorithms. Specifically, we will
solve a quadratic programming relaxation using the Frank--Wolfe algorithm and a linear programming
relaxation by developing a proximal minimization framework. By exploiting labeling consistency in
the higher-order potentials and utilizing the filter-based method, we are able to formulate the above
algorithms such that each iteration has a complexity linear in the number of classes and random
variables. The presented algorithms can be applied to any labeling problem using a dense CRF with
sparse higher-order potentials. In this paper, we use semantic segmentation as an example application
as it demonstrates the ability of the algorithm to scale to dense CRFs with large dimensions. We
perform experiments on the Pascal dataset to indicate that the presented algorithms are able to
attain lower energies than the mean-field inference method.
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1. Introduction. Conditional random fields (CRFs) are a popular framework for modeling
several problems in computer vision. The energy function of the CRF consists of a sum of three
types of terms: unary energies that depend on the label for one random variable; pairwise
energies that depend on the labels of two random variables; and higher-order energies that
depend on a collection of random variables. Notable works such as [2, 10, 19] focus on just the
unary and pairwise energies, leaving out the higher-order energies for computational efficiency.

The popularity of CRFs led to a considerable research effort in efficient energy minimiza-
tion algorithms. One of the biggest successes of this effort was the development of several
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accurate continuous relaxations of the underlying discrete optimization problem [14, 28]. An
important advantage of such relaxations is that they lend themselves easily to analysis, which
allows us to compare them theoretically [28], as well as establish bounds on the quality of
their solutions [6]. However, despite the successes of continuous relaxations, the algorithms
used to solve such relaxations fail to scale well with the number of pairwise connections. To
combat this deficiency, traditional energy minimization methods employed sparse connectivity
structures, such as 4 or 8 connected grid CRFs.

By using a mean-field inference method [17], Kr\"ahenb\"uhl and Koltun [19] were able to solve
CRFs with many pairwise connections. It was shown that the use of dense pairwise connections
achieved a more accurate labeling. In order to operationalize dense CRFs, Kr\"ahenb\"uhl and
Koltun [19] made two key observations. First, the pairwise potentials used in computer vision
typically encourage similar labeling. This enabled them to restrict themselves to the special
case of Gaussian pairwise potentials introduced by Tappen et al. [32]. Second, the message
computation required at each iteration of mean-field can be carried out in \scrO (N) operations
using the filtering approach of Adams, Baek, and Abraham [1], where N is the number of
random variables (of the order of hundreds of thousands). Vineet, Warrell, and Torr [34] made
use of this filter-based method to perform mean-field inference on a dense CRF with sparse
higher-order potentials, which provided a further improvement in segmentation accuracy.

While the mean-field algorithm does not provide any theoretical guarantees on the quality
of the solution, the use of a richer model, namely, dense CRFs with sparse higher-order poten-
tials, still allows us to obtain a significant improvement in the accuracy of several computer
vision applications compared to sparse models [19, 34]. However, this still leaves open the
intriguing possibility that the same filtering approach---which enabled the efficient mean-field
algorithm---can also be used in conjunction with the principled methods of energy minimiza-
tion with continuous relaxations. In this work we show that this is indeed possible; specifically,
the main contributions of this paper are as follows:

(1) We are the first to combine dense CRFs with higher-order potentials when using a
continuous relaxation of the maximum a posteriori (MAP) problem. Specifically, we formulate
the energy function as both a quadratic programming (QP) and a linear programming (LP)
relaxation and go on to show that both can be optimized efficiently using the filter-based
method. As a novel contribution, we then extend the energy minimization algorithms of our
existing work [2, 10] to deal with these higher-order potentials, while maintaining a complexity
that is linear in the number of labels and random variables at each iteration.

(2) We provide novel relaxations of the higher-order terms which are based on the Pn-
Potts model [15]. These formulations have been tailored to suit the specific relaxation in a
way that is amenable to the continuous relaxation of the MAP problem. We also ensure the
formulation allows efficient energy minimization using the two frameworks mentioned above.

In more detail, we make two contributions to the problem of energy minimization in dense
CRFs with sparse higher-order potentials. First, we show that the conditional gradient of a QP
relaxation [28] can be computed in a complexity linear in the number of labels and random
variables. Together with our observation that the optimal step size of a descent direction
can be computed analytically, this allows us to minimize the QP relaxation efficiently using
the Frank--Wolfe algorithm [12]. Second, we introduce an iterative LP minimization algorithm
which has a complexity at each iteration that is also linear in the number of labels and random
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variables. To this end, instead of relying on a standard subgradient technique, we propose to
make use of the proximal method [27]. The resulting proximal problem has a smooth dual,
which can be efficiently optimized using block coordinate descent. We show that each block of
variables can be optimized efficiently. Specifically, for one block, the problem decomposes into
significantly smaller subproblems, each of which is defined over a single pixel. For the other
block, the problem can be optimized via the Frank--Wolfe algorithm [12, 23]. We show that
the conditional gradient required by this algorithm can be computed efficiently. In particular,
we modify the filtering method of [1] such that the conditional gradient can be computed in a
complexity linear in the number of labels and random variables. Besides this linear complexity,
our approach has two additional benefits. First, it can be initialized with the solution of a
faster, less accurate algorithm, such as mean-field [19], thus speeding up convergence. Second,
the optimal step size of our iterative procedure can be obtained analytically, thus overcoming
the need to rely on an expensive line search procedure.

There are preliminary versions of this work available, and the interested reader is encour-
aged to visit [2, 10]. This work can be considered as a unified view of our previous work
[2, 10] with a novel addition of higher-order potentials. To keep this paper self-contained all
relevant information and findings are detailed in this paper. Specifically, our contribution is a
QP and LP relaxation for dense CRF with sparse higher-order potentials and their associated
energy minimization frameworks.

2. Related work. Kr\"ahenb\"uhl and Koltun popularized the use of densely connected CRFs
at the pixel level [19], resulting in significant improvements both in terms of the quantitative
performance and in terms of the visual quality of their results. By restricting themselves to
Gaussian pairwise potentials, they made the computation of the message passing in mean-field
feasible. This was achieved by formulating message computation as a convolution in a higher-
dimensional space, which enabled the use of an efficient filter-based method [1]. Recent works
leverage deep learning to achieve deep embeddings of the pairwise potential [5]; however, [5]
acts on the patch space, whereas in this work we act on the pixel space.

While the initial work by [19] used a version of mean-field that is not guaranteed to con-
verge, their follow-up paper [20] proposed a convergent mean-field algorithm for negative semi
definite label compatibility functions. Recently, Baqu\'e et al. [4] presented a new algorithm
that has convergence guarantees in the general case. Vineet, Warrell, and Torr [34] extended
the mean-field model to allow the addition of higher-order terms on top of the dense pairwise
potentials, enabling the use of co-occurence potentials [24] and Pn-Potts models [15].

Independently from the mean-field work, Zhang and Chen [37] designed a different set
of constraints that lends itself to a QP relaxation of the original problem. Their approach
is similar to ours in that they use continuous relaxation to approximate the solution of the
original problem but differs in the form of the pairwise potentials. The algorithm they propose
to solve the QP relaxation has linearithmic1 complexity, while ours is linear in the number
of labels and random variables. Furthermore, it is not clear whether their approach can be
easily generalized to tighter relaxations such as the LP.

Wang, Shen, and van den Hengel [35] derived a semidefinite programming relaxation of the
energy minimization problem, allowing them to reach lower energies than mean-field. Their

1An algorithm is said be linearithmic if it runs in a computational complexity of \scrO (N log(N)).
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approach has the advantage of not being restricted to Gaussian pairwise potentials. Inference
is made feasible by performing a low-rank approximation of the Gram matrix of the kernel,
instead of using the filter-based method. However, in theory, the complexity of their algorithm
is the same as our quadratic program, but in practice, the runtime is significantly higher.

The success of the inference algorithms naturally led to an interest in methods for learning
the parameters of dense CRFs; while learning the parameters is orthogonal to this work, we
include a brief review for completeness. Combining them with fully convolutional neural
networks [26] has resulted in high performance on semantic segmentation applications [7].
Several works [29, 38] showed independently how to jointly learn the parameters of the unary
and pairwise potentials of the CRF.

In this paper, we use the same filter-based method [1] as the one employed in mean-field.
We use it to solve continuous relaxations of the original problem that have both convergence
and quality guarantees. Our work can be viewed as a complementary direction to previous
research trends in dense CRFs. While [4, 20, 34] improved mean-field and [29, 38] learned the
parameters, we focus on the energy minimization problem.

3. Problem formulation. While CRFs can be used for many different applications, we
use semantic segmentation as an illustrative example. As will be seen shortly, by using the
appropriate choice of random variables, labels, and potentials, our model provides an intuitive
framework for semantic segmentation.

3.1. Dense CRF energy function. We define a dense CRF over a set of N random vari-
ables \scrX = \{ X1, . . . , XN\} , where each random variable Xa takes a single label from the set of
M labels \scrL = \{ l1, . . . , lM\} . To formalize this labeling, a vector x \in \scrL N is introduced such that
the element xa of x holds the label associated with the random variable Xa. Before proceeding
to the energy function, it will prove useful to define a clique and its relationship to the sparse
higher-order potentials. Formally, a clique is defined as a fully connected subgraph. In the
context of this work, a clique with three or more random variables represents a higher-order
potential and a clique with two random variables is represented by a pairwise potential. A
given clique Sp is a subset of \scrX and the set of cliques containing higher-order potentials \scrS is
defined below:

\scrS = \{ S1, . . . , SR\} ,(3.1)

s.t. Sp \in \{ S \subseteq \scrX | | S| > 2\} .(3.2)

Here, R represents the total number of cliques in the set \scrS . It will also prove useful to introduce
another set \scrR p, which represents the set of indexes for the random variables in the clique Sp;
this can be formally expressed as \scrR p = \{ a \in \{ 1, . . . , N\} | Xa \in Sp\} . With the introduction of
xp, which is a vector of more than two elements, containing the labels of the random variables
in the clique Sp, the energy function can be defined as

E(x) =
N\sum 
a=1

\phi a(xa) +
N\sum 
a=1

N\sum 
b=1
b\not =a

\psi a,b(xa, xb) +
R\sum 

p=1

\theta p(xp),(3.3)

where \phi a(xa) denotes the unary potential, \psi a,b(xa, xb) denotes the pairwise potential, and
\theta p(xp) denotes the clique potential. The unary potential represents the cost of assigning the
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random variable Xa the label xa. The pairwise potential represents the cost of assigning the
random variables Xa and Xb the labels xa and xb, respectively. The clique potential represents
the cost of assigning all random variables in Sp the labels xp and embodies the higher-order
potentials.

So far, the dense CRF has been described using random variables and their associated
labels. In this work we use semantic segmentation as a tangible application to demonstrate
the energy minimization of the proposed methods. In detail, a random variable corresponds
to a pixel and the associated labels correspond to a semantic class. A superpixel---which is a
collection of homogeneous spatially adjacent pixels---is represented by a higher-order clique.
The optimal solution to this energy function forms an optimization problem over the variable
x and can be compactly written as

x\ast = argmin
x\in \scrL N

E(x).(3.4)

In the general case this minimization problem is NP-hard [18] and hence cannot be solved in
polynomial time. To this extent, efficient methods will be introduced in sections 4 and 5 that
compute approximate solutions for this minimization problem.

3.1.1. Unary potentials. The unary potentials for this formulation can be arbitrary but
generally provide a rough initial labeling solution. In this work we employ unary potentials
which are derived from TextonBoost [25, 30]. More detail on the generation of the unary
potentials are given in section 6.1.

3.1.2. Gaussian pairwise potentials. We follow the work of [19] by using Gaussian pair-
wise potentials, taking the form of

\psi a,b(xa, xb) = \mu (xa, xb)Kab,(3.5)

s.t. Kab =
\sum 
m

w(m)k(m)
\bigl( 
f (m)
a , f

(m)
b

\bigr) 
,

where \mu (xa, xb) is a scalar representing the label compatibility, Kab is the pixel compatibil-
ity function, which is defined in the next paragraph, w(m) is a scalar weighting factor, and

k(m)
\bigl( 
f
(m)
a , f

(m)
b

\bigr) 
are Gaussian kernels taking the form of

k(m)(f (m)
a , f

(m)
b ) = exp

\biggl( 
 - 
| | f (m)

a  - f
(m)
b | | 2

2\sigma 2(m)

\biggr) 
.(3.6)

The terms f
(m)
a and f

(m)
b are feature vectors containing the spatial and color information of

the image with pixel indices a and b, respectively.
Pixel compatibility. For multiclass semantic segmentation problems, the pixel compatibility

function takes the form of contrast-sensitive two-kernel potentials, defined as

Kab = w(1) exp

\Biggl( 
 - | pa  - pb| 

2

2\sigma 2(1)
 - | Ia  - Ib| 

2

2\sigma 2(2)

\Biggr) 
+ w(2) exp

\Biggl( 
 - | pa  - pb| 

2

2\sigma 2(3)

\Biggr) 
,(3.7)
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with Ia, Ib and pa, pb representing the color information and spatial information of pixels
a and b, respectively, and \sigma 2(m) is the kernel bandwidth. The first term corresponds to the
bilateral kernel and is inspired by the observation that pixels of similar color and position
are likely to take the same label, and the second term corresponds to a spatial kernel which
penalizes small isolated regions. The parameters w(1), w(2), \sigma 2(1), \sigma 

2
(2), and \sigma 

2
(3) are obtained

via cross-validation; more detail is given in section 6.1.
Label compatibility. The label compatibility function \mu (xa, xb) forms part of the cost of

assigning the random variables Xa and Xb the labels corresponding to the value of xa and xb,
respectively. The label compatibility function used for this work is the Potts model [10] and
is specified as

\mu Potts(xa, xb) = 1[xa \not = xb],(3.8)

where 1[\cdot ] is the Iverson bracket. While other label compatibility functions exist, such as met-
ric or semimetric functions [14], the Potts model was chosen as it enables more sophisticated
minimisation algorithms to be leveraged, which will be discussed in sections 4 and 5.

3.1.3. Higher-order potentials. In this work, the higher-order terms are represented as
a clique potential. We formulate the higher-order potential using the Pn-Potts models [15].
Specifically, if all of the random variables in Sp do not take the same label, the clique potential
introduces a constant cost, which we set to be proportional to the variance of the color
information of the super pixel. The clique potential is defined by

\theta p(xp) =

\left\{   0 if xc = xd, \forall c, d \in \scrR p

\Gamma exp
\Bigl\{ 

 - \sigma 2
p

\eta 

\Bigr\} 
otherwise,

(3.9)

where \Gamma and \eta are cross-validated parameters and \sigma 2p represents the variance of the pixel color
values within the clique Sp. To this extent, the set of random variables which form the clique
Sp must be carefully chosen. Hence, by context of the image, all of the corresponding pixels
in the clique Sp must represent the same object.

Generating cliques. For this work, a clique represents a superpixel of an oversegmented
image. A superpixel is a collection of adjoining pixels that share similar color information.
The cliques were generated using the mean-shift algorithm [9], which is a semiparametric
method of segmenting an image into superpixels. We used the mean-shift algorithm due
to its simplicity; however, in practice any algorithm that generates oversegmentations can
be used. Evaluating the quality of the oversegmentation is beyond the scope of this work;
however, we cross-validate the size of the superpixels to ensure we use higher-order potentials
that match the problem. Representing superpixels by higher-order potentials introduces an
implicit constraint on Sp, that is, Sp \cap Sq = \varnothing \forall p, q \not = p, as every pixel is assigned to exactly
one superpixel. While this is not a necessary constraint (as the algorithms can deal with
arbitrary sizes of cliques), we will make use of this later on to ensure that the complexity of
each iteration is linear in the number of labels and pixels.

3.1.4. Filtering method. The pixel compatibility function defined in (3.7) was chosen to
take a Gaussian form due to the fact that it allows a filter-based method [1] to be utilized.
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This filter-based method exploits the permutohedral lattice to achieve efficient computation of
operations featuring Gaussian kernels; specifically it approximates the following:

\forall a \in \{ 1, . . . , N\} , v\prime a =
N\sum 
b=1

k(fa, fb)vb,(3.10)

where v\prime a, vb \in \BbbR , b \in \{ 1, . . . , N\} , and k(fa, fb) is a Gaussian kernel described in section 3.1.2.
A na\"{\i}ve approach would take \scrO (N2) operations. However, the use of the filtering method
enables this operation to be computed in approximately \scrO (N) operations. Kr\"ahenb\"uhl and
Koltun [19] employed this filter-based method to compute the message passing step of the
mean-field inference algorithm efficiently. We investigated the accuracy of the filter-based
method [1] with differing values for the variances of (3.7) in our preliminary work [10]. The
results indicate that the filtering method introduces an error scaling factor, which for large
values of N tends to 0.6. The interested reader is referred to Appendix A of [10] for more
information. This scaling factor will be propagated into the gradient, but it is implicitly
accounted for when the optimal step size is computed and hence does not have an adverse
affect on the algorithms as the direction of the gradient is exact.

3.1.5. Integer program formulation. We now formulate the energy minimization function
(3.3) as an integer program (IP). To this end, a vector y \in \BbbR NM is introduced, such that its
elements ya:i \in \{ 0, 1\} are binary variables indicating whether the random variable Xa takes
the label li. The vector yp = \{ yc:i| c \in \scrR p , i \in \scrL \} is introduced which holds the vectors of
indicator variables for xp. With this new notation the energy minimization function can be
defined as

min
y

N\sum 
a=1

\sum 
i\in \scrL 

\phi a(i)ya:i +
N\sum 
a=1

N\sum 
b=1
b \not =a

\sum 
i\in \scrL 

\sum 
j\in \scrL 

\psi a,b(i, j)ya:iyb:j +
R\sum 

p=1

\theta p(yp)(3.11)

s.t.
\sum 

i\in \scrL ya:i = 1 \forall a \in \{ 1, . . . , N\} ,
ya:i \in \{ 0, 1\} \forall a \in \{ 1, . . . , N\} , \forall i \in \scrL ,

\theta p(yp) =

\left\{   0 if yc:i = yd:i, \forall c, d \in \scrR p, c \not = d,\forall i \in \scrL ,
\Gamma exp

\Bigl\{ 
 - \sigma 2

p

\eta 

\Bigr\} 
otherwise.

(3.12)

The first set of constraints ensure that each random variable has to be assigned exactly one
label, while the second constraint ensures that the labeling is binary. It is important to note
that \theta p(\cdot ) is a polynomial with an order equal to the number of random variables within
the clique Sp. Normally the manipulation of \theta p(\cdot ) would exhibit an intractable complexity;
however, by exploiting labeling consistency in the sparse higher-order potentials, it will be
shown that this higher-order polynomial can be reformulated in a tractable manner.

3.2. Relaxations. It is worth noting that the IP in (3.11) is NP-hard [18] and hence
cannot be solved in polynomial time. We address this issue by relaxing the integral constraint
to approximate the IP, enabling us to formulate an energy minimization problem. Specifically
we formulate a QP relaxation and an LP relaxation given in sections 4 and 5, respectively.
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4. Quadratic program. We are now ready to demonstrate how the filter-based method [1]
can be used to optimize our first continuous relaxation, namely, the QP relaxation.

4.1. Notation and formulation. The unary and pairwise potentials of the IP given in
(3.11) can be neatly summarized in vector form with linear algebra operations. To this extent,
the unary potential can be concisely written as the dot product between the vector y \in \BbbR NM

and the vector of unary terms denoted \bfitphi \in \BbbR NM . The pairwise potential is a little more
complex and will require the use of the label compatibility matrix \bfitmu Potts \in \BbbR M\times M , which
in this case is the Potts model described in (3.8). For the pixel compatibility function, each
kernel (3.6) is represented by the Gram matrix \bfitK (m) \in \BbbR N\times N . The element of \bfitK (m) at index

(a, b) corresponds to the value of k(m)
\bigl( 
f
(m)
a , f

(m)
b

\bigr) 
. The matrix \bfitPsi \in \BbbR NM\times NM represents the

pairwise terms and is defined as

\bfitPsi = \bfitmu Potts \otimes 
\sum 
m

w(m)
\bigl( 
\bfitK (m)  - \bfitI N

\bigr) 
,(4.1)

where \otimes is the Kronecker product and \bfitI N is the identity matrix of size N \times N . Similarly to
[20],\bfitK (m) has a unit diagonal and hence the identity matrix \bfitI N is introduced for completeness.
The objective function of the IP for the unary and pairwise potentials is given in vectorized
form as

min
y

\bfitphi Ty + yT\bfitPsi y,(4.2)

s.t.
\sum 

i\in \scrL ya:i = 1 \forall a \in \{ 1, . . . , N\} ,
ya:i \in \{ 0, 1\} \forall a \in \{ 1, . . . , N\} , \forall i \in \scrL .

In the general case, a clique potential forms a high-order polynomial with an order equal to
the number of random variables in each clique. However, by exploiting labeling consistency,
we are able to reformulate this high-order polynomial as a lower-order one. To this end, a
binary auxiliary variable zp:i is introduced which indicates whether all of the random variables
in the clique Sp take the label \scrL i. The auxiliary variable zp:i is given as

zp:i =

\Biggl\{ 
0 if yc:i = 1 \forall c \in \scrR p,

1 otherwise.
(4.3)

In other words if all random variables in the clique Sp take the same label, then zp:i = 0.
Before proceeding to the definition of the clique potential for the QP it will be beneficial
to introduce an additional term Hp(a), which is used to indicate if the random variable Xa

belongs to the clique Sp. Formally Hp(a) = 1 if a \in \scrR p and Hp(a) = 0 otherwise. With the
addition of the auxiliary variable zp:i and the indicator term Hp(a), the clique potential forms
a quadratic polynomial in zp:i and ya:i, which is given below. The clique potential is given as

fc :=

R\sum 
p=1

\sum 
i\in \scrL 

Cp

\Bigl( 
zp:i +

\bigl( 
(1 - zp:i)

N\sum 
a=1

Hp(a)(1 - ya:i)
\bigr) \Bigr) 
.(4.4)

It is worth noting that the last term will always evaluate to zero. However, once the binary
constraints on zp:i and ya:i are relaxed, the latter term provides a coupling between zp:i and ya:i.
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More detail will be given on this in section 4.1.1. The vectorized version of zp:i is z \in \BbbR MR.
The values of Hp(a) form the matrix \bfitH \in \BbbR MR\times NM , which is a sparse matrix of ones, such
that the elements are in the correct order to perform the summations. The matrix \bfitH is purely
provided for illustrative purposes, and due to its sparse nature, in the implementation it is
not stored as a matrix of size MR\times NM . Instead, R arrays are instantiated with each array
containing the indexes of the pixels within the clique. With the addition of z and \bfitH , the IP
can be concisely written in vector form as

min
y,z

f(y, z) = min
y,z

\bigl( 
\bfitphi Ty + yT\bfitPsi y + cT z+ (1z  - z)TC\bfitH (1y  - y)

\bigr) 
,(4.5)

where c \in \BbbR MR is a vector containing the constants Cp in the appropriate order. The matrix
C \in \BbbR MR\times MR is the diagonal matrix of the vector c. The vectors 1z \in \BbbR MR and 1y \in \BbbR NM

are vectors of all ones.

4.1.1. Relaxations. The IP introduced in (4.5) is an NP-hard problem. To overcome this
difficulty, it is proposed to relax the binary constraints on the indicator variable ya:i and the
auxiliary variables zp:i, allowing them to take fractional values between 0 and 1. Formally,
with these relaxations, the feasible set for y and x becomes

\scrY =

\biggl\{ 
y

\sum 
i\in \scrL ya:i = 1, a \in \{ 1, . . . , N\} 
ya:i \geq 0, a \in \{ 1, . . . , N\} , i \in \scrL 

\biggr\} 
,(4.6)

\scrZ = \{ z 0 \leq zp:i \leq 1, Sp \in \scrS , i \in \scrL \} .(4.7)

Thus, the QP relaxation can be formally defined as

min
y,z

f(y, z) = min
y,z

\bigl( 
\bfitphi Ty + yT\bfitPsi y + cT z+ (1z  - z)TC\bfitH (1y  - y)

\bigr) 
(4.8)

s.t. y \in \scrY , z \in \scrZ .

4.2. Minimization. The minimization of the objective function is achieved via the Frank--
Wolfe algorithm [12], which is advantageous for two reasons: First, the Frank--Wolfe algorithm
is projection free, and second, the conditional gradient can be computed in a complexity linear
in the number of pixels and labels. The objective function of (4.8) can be solved in several
ways; however, even though (4.8) is non--convex, we choose to obtain a local minimum using
the Frank--Wolfe algorithm, as we are able to take advantage of the aforementioned qualities.
While the Frank--Wolfe algorithm normally optimizes convex objectives, it has been proven to
find a stationary point at a rate of \scrO (1/

\surd 
t) of a nonconvex objective function over a convex

compact set,2 where t is the number of iterations [22]. The key steps of the algorithm are
shown in Algorithm 4.1. To utilize the Frank--Wolfe algorithm effectively, three steps need
to be taken: obtaining the gradient of the objective function (step 3), efficient conditional
gradient computation (step 4), and the optimal step size calculation (step 5). All three of
these requirements are achieved in a feasible manner and details are given in this section.

2A topological space \scrX is called compact if every open cover has a finite subcover. Furthermore, a set
\scrD \subset \BbbR N is compact if and only if it is closed and bounded [13].
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Algorithm 4.1. QP minimization algorithm

1: y0 \in \scrY , z0 \in \scrZ  \triangleleft Initialize
2: while not converged do
3: gt \leftarrow \nabla f(yt, zt)  \triangleleft Compute the gradient

4:
\bigl( 
sty, s

t
z

\bigr) T \leftarrow argminsy\in \scrY ,sz\in \scrZ 
\bigl\langle \bigl( 

sy, sz
\bigr) T
,gt
\bigr\rangle 

 \triangleleft Compute the conditional gradient

5: \delta \leftarrow argmin\delta \in [0,1]f(y
t + \delta (sty  - yt), zt + \delta (stz  - zt))  \triangleleft Compute the optimal step size

6:
\bigl( 
yt+1, zt+1

\bigr) 
\leftarrow 
\bigl( 
yt + \delta (sty  - yt), zt + \delta (stz  - zt)

\bigr) 
 \triangleleft Update

4.2.1. Gradient computation. The Frank--Wolfe algorithm requires efficient computation
of the gradient, which can easily be achieved for this problem. Formally, the gradient of f is
defined as

\nabla f(y, z) =
\biggl( 
\bfitphi + 2\bfitPsi y +\bfitH TC(z - 1z)

c+C\bfitH (y  - 1y)

\biggr) 
.(4.9)

Specific attention is drawn to the complexity of the gradient in the y direction. The unary term
is left as a constant and hence scales linearly with the number of labels and random variables.
Computing the value of the pairwise potential in the na\"{\i}ve way would result in a complexity
of the order \scrO ((MN)2), which for dimensions of an image is intractable. However, due to
the elements of \bfitPsi containing Gaussian kernels, this expensive computation of the pairwise
potential can be performed in linear time using the filter-based method; more detail on this
filter-based method is given in section 3.1.4.

Due to the fact that \bfitH performs a summation over random variables and labels and there
is no intersection between cliques Sp\cap Sp = \varnothing , the resulting complexity of the clique potential
is of the order \scrO (NM) as for each clique we perform a sum over only the labels and pixels
within that clique.

4.2.2. Low-cost gradient computation. We observe that the gradient introduced in sec-
tion 4.2.1 need not be explicitly computed at every iteration. Instead the gradient can be
incremented from its initial value using the update equations, which are given as\biggl( 

yt+1

zt+1

\biggr) 
=

\biggl( 
yt + \delta (sy

t  - yt)

zt + \delta (sz
t  - zt)

\biggr) 
,(4.10)

where sy and sz are the conditional gradients of f(y, z). The expensive operations of 2\bfitPsi y and
\bfitH TCz in (4.9) can be avoided by using the values of 2\bfitPsi (sy  - y) and \bfitH TC(sz  - z)---which
are both computed as part of the optimal step size---and by using the update equations. By
multiplying the update equation for y by 2\bfitPsi and multiplying the update equation for z by
\bfitH TC, the updated terms can be given as

2\bfitPsi yt+1 = 2\bfitPsi yt + 2\delta \bfitPsi (sy
t  - yt),(4.11)

\bfitH TCzt+1 = \bfitH TCzt + \delta \bfitH TC(sz
t  - zt).(4.12)

Thus, allowing the explicit computation of 2\bfitPsi y and \bfitH TCz to be avoided. Instead their
values can be incremented from their previous state. Hence the updated gradient in y is also
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an increment from the previous step via the addition of 2\delta \bfitPsi (sy
t  - yt) + \delta \bfitH TC(sz

t  - zt) and
is more formally given as

\nabla yf(y
t+1, zt+1) = \nabla yf(y

t, zt) + 2\delta \bfitPsi (sy
t  - yt) + \delta \bfitH TC(sz

t  - zt).(4.13)

A similar approach can be taken for \nabla zf(y
t+1, zt+1). Incrementing the gradients reduces

the operational complexity by a constant factor of two. This is due to the fact that the filter-
based method does not need to be called when computing the gradient and the product of
\bfitH TCz does not need to be computed either.

4.2.3. Conditional gradient computation. Computing the conditional gradient is an es-
sential step in the Frank--Wolfe algorithm, and we show that it can be computed in a com-
plexity linear in the number of labels and pixels. The conditional gradient ( sysz ),with sy \in 
\scrY , sz \in \scrZ , of the objective function f is obtained by solving\biggl( 

sy
sz

\biggr) 
\in argminsy\in \scrY ,sz\in \scrZ 

\biggl\langle \biggl( 
sy
sz

\biggr) 
,\nabla f(y, z)

\biggr\rangle 
.(4.14)

Minimizing (4.14) with dimensions proportional to that of an image would normally be an
expensive operation. However, the reader's attention is drawn to the fact that the feasible set
\scrY is linearly separable into N subsets as follows: \scrY =

\prod 
a \scrY a, where \scrY a = \{ ya:i| 

\sum 
i\in \scrL ya:i =

1, ya:i \geq 0, i \in \scrL \} . Exploiting this constraint enables the minimization problem to be broken
down intoN smaller minimization problems for each of the random variables in \scrX . Minimizing
\langle sy,\nabla f(y, z)\rangle with respect to sy is thus achieved via N linear searches with the search space
restricted to the number of labels. The resulting computational complexity of the conditional
gradient is \scrO (NM) and is more formally defined as

s
(y)
a:i =

\Biggl\{ 
1 if i = argmini\in \scrL 

\partial f(y,z)
\partial ya:i

,

0 otherwise.
(4.15)

For the case where argmini\in \scrL 
\partial f(y,z)
\partial ya:i

yields multiple values, we arbitrarily assign s
(y)
a:i = 1 for

only one of the given minima. The feasible set \scrZ is also separable and can be decomposed
as follows: \scrZ =

\prod 
p,i\scrZ p:i. Thus the minimization for sz = argmini\in \scrZ \langle sz,\nabla zf(y, z)\rangle can be

performed via a linear search through all MR elements. With the constraints on the set
\scrZ p:i = \{ z| 0 \leq zp:i \leq 1 \forall p,\forall i \in \scrL \} , the conditional gradient sz, is given as

s
(z)
p:i =

\Biggl\{ 
1 if \nabla zf(y, z) < 0,

0 otherwise.
(4.16)

The complexity of sz will always be significantly less than the complexity of sy due to R\ll N .
Hence, the computational complexity of calculating the conditional gradient is \scrO (NM) as
computing sy requires the most floating point operations.

4.2.4. Optimal step size calculation. Traditionally, the step size to the Frank--Wolfe
algorithm is achieved via line search. However, for this problem the optimal step size can be
computed via minimizing a quadratic function over a single variable. This quadratic function
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has a closed form solution and the minimum can be calculated analytically. The optimal step
size for the Frank--Wolfe algorithm is obtained by solving

\delta = argmin\delta \in [0,1]f(y + \delta (sy  - y), z+ \delta (sz  - z)).(4.17)

A closed form solution of the optimal step size is given in Appendix A.1. Obtaining the
optimal step size will result in faster convergence and hence yield an efficient algorithm.

4.3. Summary. The above procedure remains linear in the number of pixels and labels
at each iteration, despite introducing higher-order potentials which would normally cause
intractability within the algorithm. This is achieved via exploiting the filter-based method
[1], labeling consistency within a clique and enforcing the intersection between cliques to be
an empty set. It is worth noting that the filter-based method is called only once per iteration,
resulting in an efficient QP minimization algorithm.

5. Linear program. In this section we introduce the LP relaxation, our second continuous
relaxation. To this end, relaxations will be applied to the objective function (3.11) and dual
variables will be introduced, allowing the Lagrange dual problem to be formulated. An optimal
solution can then be found via the use of the proximal minimization algorithm [27] which
guarantees a monotonic decrease in the objective function.

5.1. Linear programming relaxation. In a similar manner to the QP, we also relax the
binary indicator variables ya:i, and due to the use of the Potts model and the Pn-Potts model,
we can write the relaxation of (3.11) as a piecewise linear function, defined as

min
y

\~E(y) =
N\sum 
a=1

\sum 
i\in \scrL 

\phi a:iya:i +
N\sum 
a=1

N\sum 
b=1
b \not =a

\sum 
i\in \scrL 

Kab
| ya:i  - yb:i| 

2
+

R\sum 
p=1

Cpmax
i\in \scrL 

max
c,d\in \scrR p

c \not =d

| yc:i  - yd:i| (5.1)

s.t. y \in \scrY ,

where Kab is the pixel compatibility function defined in (3.7). For integer labelings, the ob-
jective \~E(y) has the same value as the IP objective E(y) and is known to provide the best
theoretical bounds [14]. Using standard solvers to minimize this LP would require the intro-
duction of \scrO ((NM)2) variables (see (5.2)), making it intractable. Therefore the nonsmooth
objective of (5.1) has to be optimized directly. This was handled using projected subgradient
descent in our previous version [10], which also turns out to be inefficient in practice. In
this paper, we extend the algorithm introduced in [2] to handle higher-order potentials while
maintaining linear scaling at each iteration in both space and time complexity.

The piecewise linear functions | ya:i - yb:i| , in the pairwise and clique potentials, can be re-
formulated as piecewise maximum functions max\{ ya:i - yb:i, yb:i - ya:i\} , and then subsequently
replaced by auxiliary variables vab:i and wp in the standard way. The auxiliary variables and
their constraints enable the minimization problem to be defined without the piecewise max-
imum operators. With the introduction of these auxiliary variables the primal minimization
problem can be written as an LP relaxation and is given as
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min
y,v,w

N\sum 
a=1

\sum 
i\in \scrL 

\phi a:iya:i +
N\sum 
a=1

N\sum 
b=1
b\not =a

\sum 
i\in \scrL 

Kab

2
vab:i +

R\sum 
p=1

Cpwp +
1

2\lambda 
| | y  - yk| | 2(5.2)

s.t. vab:i \geq ya:i  - yb:i \forall a, b \in \{ 1, . . . , N\} a \not = b \forall i \in \scrL ,
vab:i \geq yb:i  - ya:i \forall a, b \in \{ 1, . . . , N\} a \not = b \forall i \in \scrL ,
wp \geq yc:pi  - yd:pi \forall c, d \in \scrR p c \not = d \forall i \in \scrL \forall p \in \{ 1, . . . , R\} ,
wp \geq yd:pi  - yc:pi \forall c, d \in \scrR p c \not = d \forall i \in \scrL \forall p \in \{ 1, . . . , R\} ,
ya:i \geq 0 \forall a \in \{ 1, . . . , N\} \forall i \in \scrL ,\sum 

i\in \scrL 
ya:i = 1 \forall a \in \{ 1, . . . , N\} .

In the next section we present our minimization strategy for the above LP relaxation.

5.2. Minimization. In this section we present our efficient minimization strategy, which
uses the proximal method [27]. The complexity of each iteration of our implementation re-
mains linear in the number of labels and pixels.

5.2.1. Proximal minimization for LP relaxation. Our goal is to design an efficient min-
imization strategy for the LP relaxation in (5.1). In our previous version [10], we utilized
projected subgradient descent to minimize an LP similar to (5.2); however, this method re-
sulted in a significantly high runtime and a complexity that scales at \scrO (MN log(N)) at each
iteration. To this end, we propose to use the proximal minimization algorithm [27]. The
additional quadratic regularization term makes the dual problem smooth, enabling the use of
more sophisticated optimization methods. Furthermore, this method guarantees a monotonic
decrease in the objective value, enabling us to leverage faster methods for initialization. In the
remainder of this paper, we detail this approach and show that each iteration has a complex-
ity linear in the number of labels and pixels. In practice, our algorithm converges in a small
number of iterations, thereby making the overall approach computationally efficient. The
proximal minimization algorithm [27] is an iterative method that, given the current estimate
of the solution yk, solves the problem

min
y

\~E(y) +
1

2\lambda 
| | y  - yk| | 2(5.3)

s.t. y \in \scrY ,
where \lambda influences the weighting of the quadratic regularizer. In this section we introduce a
new algorithm that is tailored to this problem. In particular, we solve the Lagrange dual of
(5.3) in a blockwise fashion.

5.2.2. Dual formulation. To write the LP relaxation (5.1) as the dual function, four
vectors of dual variables will be introduced for each constraint:

\bfitalpha = \{ \alpha 1
ab:i, \alpha 

2
ab:i| a \in \{ 1, . . . , N\} , b \in \{ 1, . . . , N\} , a \not = b, i \in \scrL \} ,(5.4)

\bfitmu = \{ \mu 1cd:pi, \mu 2cd:pi| c, d \in \scrR p, c \not = d, i \in \scrL , p \in \{ 1, . . . , R\} \} ,(5.5)

\bfitgamma = \{ \gamma a| a \in \{ 1, . . . , N\} , i \in \scrL \} \} ,(5.6)

\bfitbeta = \{ \beta a| a \in \{ 1, . . . , N\} \} ,(5.7)
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where (5.4) is for the constraints on vab:i, (5.5) for the constraints on wp, (5.6) for the non-
negativity of ya:i, and (5.7) for the labeling of ya:i, respectively. The dimensions of these
vectors are \bfitalpha \in \BbbR 2N(N - 1)M ,\bfitmu \in \BbbR 2N(N - 1)M ,\bfitbeta \in \BbbR N , and \bfitgamma \in \BbbR NM . Clearly when dealing
with images, the dimensions of \bfitalpha and \bfitmu are intractable. It will be shown that these vectors
need not be stored explicitly; instead they can be stored in a compact form. To this extent,
three matrices are introduced: A \in \BbbR NM\times 2N(N - 1)M , U \in \BbbR NM\times 2N(N - 1)M , and B \in \BbbR NM\times N ,
such that

(A\bfitalpha )a:i =

N\sum 
b=1
a\not =b

(\alpha 2
ab:i  - \alpha 1

ab:i  - \alpha 2
ba:i + \alpha 1

ba:i),(5.8)

(U\bfitmu )c:pi =
\sum 
d\in \scrR p

c \not =d

(\mu 2cd:pi  - \mu 1cd:pi  - \mu 2dc:pi + \mu 1dc:pi),(5.9)

(B\bfitbeta )a:i = \beta a.(5.10)

As will be seen shortly, only the products of (A\bfitalpha ) \in \BbbR NM , (U\bfitmu ) \in \BbbR NM need to be stored,
enabling an efficient implementation. It is also worth defining two of the properties of the
matrix B, the product of BTy = 1, where y \in \scrY and 1 is a vector of all ones. The second
property of B is that BTB = MI, where I is the identity matrix and M is the number of
labels. With the dual variables introduced it is now possible to proceed to the formation of
the dual problem of (5.2).

Proposition 5.1 (formation of the Lagrange dual).
1. The Lagrange dual of (5.2) is given as

min
\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma 

g(\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma ) =
\lambda 

2
| | A\bfitalpha +U\bfitmu +B\bfitbeta + \bfitgamma  - \bfitphi | | 2 + \langle A\bfitalpha +U\bfitmu +B\bfitbeta + \bfitgamma  - \bfitphi ,yk\rangle 

(5.11)

 - \langle 1,\bfitbeta \rangle 
s.t. \gamma a:i \geq 0 \forall a \in \{ 1, . . . , N\} \forall i \in \scrL ,

\bfitalpha \in \scrA =

\biggl\{ 
\bfitalpha 

\alpha 1
ab:i + \alpha 2

ab:i =
Kab
2 a, b \in \{ 1, . . . , N\} , a \not = b, i \in \scrL 

\alpha 1
ab:i, \alpha 

2
ab:i \geq 0 a, b \in \{ 1, . . . , N\} , a \not = b, i \in \scrL 

\biggr\} 
,

\bfitmu \in \scrU =

\Biggl\{ 
\bfitmu 

\sum 
i\in \scrL 
\sum 

c,d\in \scrR p

c \not =d

\mu 1cd:pi + \mu 2cd:pi = Cp p \in \{ 1, . . . , R\} 

\mu 1cd:pi, \mu 
2
cd:pi \geq 0 c, d \in \scrR p, c \not = d, i \in \scrL , p \in \{ 1, . . . , R\} 

\Biggr\} 
.

2. The primal variable y satisfies the following:

y = \lambda (A\bfitalpha +U\bfitmu +B\bfitbeta + \bfitgamma  - \bfitphi ) + yk.(5.12)

Proof. A detailed formulation of the Lagrangian and the dual is given in
Appendix A.2.
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Algorithm 5.1. Proximal minimisation of LP

1: y0 \in \scrY  \triangleleft Initialise
2: for k \leftarrow 0...K do
3: A\bfitalpha 0 \leftarrow 0,U\bfitmu 0 \leftarrow 0,B\bfitbeta 0 \leftarrow 0,\bfitgamma 0 \leftarrow 0  \triangleleft Initialise
4: for t\leftarrow 0...T do
5: (\bfitbeta t,\bfitgamma t)\leftarrow argmin\bfitbeta ,\bfitgamma g(\bfitalpha 

t,\bfitmu t,\bfitbeta ,\bfitgamma )  \triangleleft Optimise \bfitbeta t and \bfitgamma t

6: \~yt = \lambda (A\bfitalpha t +U\bfitmu t +B\bfitbeta t + \bfitgamma t  - \bfitphi ) + yk  \triangleleft Update feasible solution
7:

\bigl( 
st\alpha , s

t
\mu 

\bigr) 
\leftarrow argmins\alpha \in \scrA ,s\mu \in \scrU 

\bigl\langle \bigl( 
s\alpha , s\mu 

\bigr) 
,\nabla g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t)

\bigr\rangle 
 \triangleleft Conditional gradient

8: \delta \leftarrow argmin\delta g(\bfitalpha 
t + \delta (st\alpha  - \bfitalpha t),\bfitmu t + \delta (st\mu  - \bfitmu t),\bfitbeta t,\bfitgamma t)  \triangleleft Optimal step size

9:
\bigl( 
\bfitalpha t+1,\bfitmu t+1

\bigr) 
\leftarrow 
\bigl( 
\bfitalpha t + \delta (st\alpha  - \bfitalpha t),\bfitmu t + \delta (st\mu  - \bfitmu t)

\bigr) 
 \triangleleft Update

10: yk+1 \leftarrow P\scrY (\~y
t)  \triangleleft Project the primal solution onto the feasible set \scrY 

5.2.3. LP minimization algorithm. The dual problem (5.11), in its standard form, can
only be tackled using projected gradient descent. However, by separating the variables based
on the type of the feasible domains, we are able to formulate an efficient block coordinate
descent approach. Each of these blocks is amenable to more sophisticated optimization meth-
ods, resulting in a computationally efficient algorithm. As the dual problem is strictly convex
and smooth, the optimal solution is still guaranteed. The variables are separated as follows:
\bfitalpha and \bfitmu into one block and \bfitgamma and \bfitbeta into another block, with each block being amenable to
more sophisticated optimization algorithms. For \bfitbeta and \bfitgamma the problem decomposes over the
random variables. Then with the optimal values of \bfitbeta and \bfitgamma , the minimization of \bfitalpha and \bfitmu is
over a compact domain and can be efficiently tackled using the Frank--Wolfe algorithm [12].
The complete algorithm is summarized in Algorithm 5.1.

Optimizing over \bfitbeta and \bfitgamma . The values of \bfitbeta and \bfitgamma are efficiently optimized in linear time with
the variables \bfitalpha and \bfitmu fixed as \bfitalpha t and \bfitmu t. This is achieved via the use of simultaneous equations
and the QP minimization algorithm detailed in [36]. Due to the unconstrained nature of \bfitbeta ,
the minimum value of the dual objective g is obtained when \nabla \beta g(\bfitalpha 

\bfitt ,\bfitmu \bfitt ,\bfitbeta ,\bfitgamma ) = 0 and hence
\bfitbeta can be derived as a function of \bfitgamma .

Proposition 5.2 (optimal for \bfitbeta ).
1. The optimal value for \bfitbeta forms a compact expression given as

\bfitbeta =  - BT

M
(A\bfitalpha \bfitt +U\bfitmu \bfitt + \bfitgamma  - \bfitphi ).(5.13)

Proof. A detailed formulation of the optimal expression for \bfitbeta is given in Appendix A.3.

By substituting the expression for \bfitbeta into the dual objective (5.11), a quadratic optimiza-
tion problem over \bfitgamma is formed. Interestingly, the resulting problem can be optimized indepen-
dently for each pixel, with each subproblem being an M dimensional QP with nonnegativity
constraints.

Proposition 5.3 (optimizing \bfitgamma ).
1. The optimal value for \bfitgamma a is obtained by minimising the following QP:
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min
\gamma a

1

2
\bfitgamma \bfitT 

aQ\bfitgamma a + \langle Q((A\bfitalpha \bfitt 
a) + (U\bfitmu \bfitt )a  - \bfitphi a) + yk,\bfitgamma a\rangle (5.14)

s.t. \bfitgamma a \geq 0.

Proof. The derivation of (5.14) is given in Appendix A.4.

Here, \bfitgamma a denotes the vector \{ \gamma a:i| i \in \scrL \} and Q = \lambda (\bfitI  - 1
M ). For notational simplicity it

will be beneficial to write the quadratic program above (5.14) in the following way:

min
\gamma a

1

2
\bfitgamma \bfitT 

aQ\bfitgamma a  - \langle ha,\bfitgamma a\rangle ,(5.15)

ha =  - Q((A\bfitalpha \bfitt 
a) + (U\bfitmu \bfitt )a  - \bfitphi a) - yk.

We optimize each of these subproblems using the iterative method given in [36], as it enables
the optimization to remain linear in the number of labels at each iteration. The key stage of
the algorithm is the elementwise update equation, which is given by

\gamma a:i = \gamma a:i

\Biggl[ 
2(Q - \gamma a)i + h+a:i + c

(| Q| \gamma a)i + h - a:i + c

\Biggr] 
,(5.16)

where Q - = max( - Q,0), | Q| = abs(Q), h+a:i = max(ha:i, 0), h
 - 
a:i = max( - ha:i, 0), and

0 < c \ll 1. Once an optimal value for \bfitgamma is obtained, the value of \bfitbeta can be calculated
via (5.13). Note that even though the matrix Q has M2 elements, the multiplication by Q
can be performed in \scrO (M). In particular, the multiplication by Q can be decoupled to a
multiplication by an identity matrix and a matrix of all ones, both of which can be performed
in linear time. Similar observations can be made for the matrices Q - and | Q| , hence the time
complexity of the above update is \scrO (M). The interested reader is referred to [36] for more
information.

Once values for \bfitgamma and \bfitbeta are obtained, the values for \bfitgamma t and \bfitbeta t are fixed as \bfitgamma and \bfitbeta . Due
to the fact that optimization of \bfitgamma decomposes over the number of pixels, and the optimization
of each subproblem is linear in the number of labels, the total complexity of the optimization
of \bfitgamma and \bfitbeta is linear in the number of labels and random variables at each iteration.

Optimizing over \bfitalpha and \bfitmu . We now turn to the problem of optimizing over \bfitalpha and \bfitmu given
\bfitbeta t and \bfitgamma t. To this end, we use the Frank--Wolfe algorithm [12], which has the advantage of
being projection free. Furthermore, we show that the conditional gradient can be computed in
a linear complexity and that the step size can be obtained analytically. The time complexity
of each iteration of this method is linear in the number of pixels and labels. In practice, the
Frank--Wolfe algorithm is only run for a fixed number of iterations.

Conditional gradient computation. With the dual variables fixed at \bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t the con-
ditional gradient ( s\alpha s\mu ) is obtained by solving the following:\biggl( 

s\alpha 
s\mu 

\biggr) 
\in argmin

s\alpha \in \scrA ,s\mu \in \scrU 

\biggl\langle \biggl( 
s\alpha 
s\mu 

\biggr) 
,

\biggl( 
\nabla \bfitalpha g(\bfitalpha 

t,\bfitmu t,\bfitbeta t,\bfitgamma t)
\nabla \bfitmu g(\bfitalpha 

t,\bfitmu t,\bfitbeta t,\bfitgamma t)

\biggr) \biggr\rangle 
.(5.17)

Minimizing this equation to obtain the conditional gradients s\alpha and s\mu can be neatly summa-
rized by exploiting the properties of the matricesA andU given in (5.8) and (5.9), respectively.
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Proposition 5.4 (conditional gradient computation).
1. The conditional gradient s\alpha is given by

(As\alpha )a:i =
N\sum 
b=1

(Kab1[\~y
t
a:i \leq \~ytb:i] - Kab1[\~y

t
b:i \leq \~yta:i]).(5.18)

2. The conditional gradient s\mu is given by

(Us\mu )c:pi =

\left\{     
Cp if \~ytc:pi \leq \~ytd:pj \forall d \in \scrR p\setminus c, \forall j \in \scrL ,
 - Cp if \~ytc:pi \geq \~ytd:pj \forall d \in \scrR p\setminus c, \forall j \in \scrL ,
0 otherwise,

(5.19)

where \~yt is the current (infeasible) solution computed using (5.12).

Proof. Full derivations of the conditional gradients are given in Appendix A.5.

Note that the conditional gradient in (5.18) takes the same form as the subgradient in
equation (20) of [10]. This is not a surprising result, as there has been a proven duality
relationship between subgradients and conditional gradients for certain problems [3]. The
conditional gradient s\alpha is obtained via the use of a modified version of the advanced filter-based
method with more detail given in Appendix A.7, which reduces (5.18) to a linear complexity.
The conditional gradient s\mu is obtained via a linear search through all the elements of each
clique to find the minimum and the maximum values for \~ytc:i in each clique and setting the
values to Cp and  - Cp, respectively. Hence, the resulting complexity of the conditional gradient
is linear in the number of variables and labels.

Optimal step size. The performance of any gradient descent based algorithm is fundamen-
tally dependant on the choice of step size. Here, the optimal step size can be computed via
minimizing a quadratic function over a single variable, which has a closed form solution. This
further improves the efficiency of this method. The optimal step size for the Frank--Wolfe
algorithm is obtained by solving

\delta = argmin
\delta \in [0,1]

g(\bfitalpha t + \delta (st\alpha  - \bfitalpha t),\bfitmu t + \delta (st\mu  - \bfitmu t),\bfitbeta t,\bfitgamma t),(5.20)

which can be obtained analytically and has a closed form solution.

Proposition 5.5 (optimal step size calculation). The optimal step size to the Frank--Wolfe
algorithm is given as

\delta = P[0,1]

\Biggl[ 
\langle A\bfitalpha t +U\bfitmu t  - Ast\mu  - Ust\alpha ,y

t\rangle 
\lambda | | A\bfitalpha t +U\bfitmu t  - Ast\mu  - Ust\alpha | | 2

\Biggr] 
,(5.21)

where P[0,1] indicates the truncation of the quotient into the interval [0, 1].

Proof. Full derivations of the conditional gradients are given in Appendix A.6.
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5.3. Summary. To summarize, our method has the following desirable qualities of an
efficient iterative algorithm. With our choice of a quadratic proximal term, the dual of the
proximal problem can be efficiently optimized in a blockwise fashion. Specifically, the dual
variables \bfitbeta and \bfitgamma are computed efficiently by minimizing a small QP (of dimensions equal
the number of labels) for each pixel independently. The remaining dual variables \bfitalpha and \bfitmu are
optimized using the Frank--Wolfe algorithm, where the conditional gradients are computed in
linear time, and the optimal step size is obtained analytically. Overall, the time complexity of
one iteration of our algorithm is \scrO (NM) and has no dependence on the number of cliques or
their size. This is achieved via again exploiting the filter-based method [1], labeling consistency
within a clique and enforcing the intersection between cliques to be an empty set. To the best
of our knowledge, this constitutes the first LP minimization algorithm for dense CRFs with
sparse higher-order potentials, with a complexity linear in the number of labels and pixels per
iteration.

6. Evaluation. This section details the evaluation of the QP and LP implementation
outlined in the previous sections; specifically we provide details on datasets, methods, and
results. We use semantic segmentation as an example application to demonstrate the low
energies achieved by the optimization methods and their ability to tackle dense CRFs whose
dimensions match those of images. While we are aware that current state-of-the-art methods
focus on increasing the intersection over union (IoU) score [8, 38], we consider this avenue to be
tangential to our work and focus primarily on energy minimization to evaluate the methods.
The experiments were conducted on the Pascal VOC 2010 dataset [11] and the MSRC dataset
[16], which are both standard benchmarks for semantic segmentation.

Pascal contains 1928 color images with dimensions of approximately 500 \times 400 pixels, and
20 classes excluding the background. We split the data in the same way as in [19], that is, 40\%
for training, 15\% for validation, and 45\% for testing. We also use the unary potentials from
[19] which were trained using the 40\% training set. To obtain the kernel and higher-order
potential parameters, we use the 15\% validation set, with the evaluation performed on the
45\% testing set.

MSRC contains 591 images with 21 classes; the dimensions of the images are 320 \times 213
pixels. The labeling ground truths provided in the MSRC dataset are of poor quality as regions
around the object are left unlabeled and the boundaries are inaccurate. Hence, the current
dataset is not sufficient for performance evaluation; to overcome this Kr\"ahenb\"uhl and Koltun
[19] manually produced accurate segmentations for 94 images. It is this smaller dataset with
accurate ground truths on which we perform the cross validation and tests. We also use the
unary potentials from [19] which were not trained on any of the images with accurate ground
truths.

We denote the QP and LP implementations as QPclique and LPclique, respectively. We
also performed experiments for the QP and LP without introducing higher-order potentials,
i.e., the objective function just consists of a unary and a pairwise potential, which we denote
as QP and LP, respectively. To provide a standard benchmark, we compare our methods
against methods that optimize a dense CRF model, namely, the mean-field algorithm [19] and
its higher-order variant [34]. We denote these methods as MF5 and MF5clique, which were
both run for five iterations, as is often done in practice. All experiments were conducted on a
3.60GHz Intel i7-6850K processor. No GPU parallelization was utilized and the experiments
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were performed within a single processing thread. The initial starting points for the algorithms
are obtained by minimizing the unary potentials.

6.1. Methods.
Training of unary potentials. The unary potentials were trained using the JointBoost algo-

rithm [33] by Kr\"ahenb\"uhl and Koltun [19]. To train the unary potentials for both datasets,
45\% of each of the original datasets were used.

Generating cliques. To generate the higher-order potentials we used the mean-shift algo-
rithm [9]. To obtain higher-order potentials that match the problem, we cross validate the
minimum region size. We set a spatial and range resolution to 8 and 4, respectively, to avoid
cross validating a large number of parameters.

Cross validation of parameters. We use cross validation to find a set of parameters that best
represent the semantic segmentation problem. We consider the choice of optimal parameters
to be beyond the scope of this work. Due to the long runtime of the LP, we only performed
cross validation on the QP and mean-field algorithms. For the QPclique and MF5clique,
eight parameters had to be cross validated---five for the pixel compatibility function (3.7) and
then three for the clique potential (3.9). For the QP and MF5, only five parameters had
to be cross validated for the pixel compatibility function (3.7). This was achieved using the
Spearmint package [31], which uses Bayesian inference to obtain a set of suitable parameters.
The cross-validated parameters are given in Appendix A.8.

6.2. Results. The collected results provide a quantitative measure of accuracy, energy,
and IoU. Accuracy is measured as a percentage of correctly labeled pixels. Energy is the value
of the energy function for the resultant labeling. ForQP, LP, andMF5 the assignment energy
is calculated using only the unary and pairwise terms of (3.11), while QPclique, LPclique, and
MF5clique take the energy function of (3.11). The IoU gives a representation of the proportion
of correctly labeled pixels to all pixels taking that class. The optimization process relies on
relaxing the constraints on the variables, allowing them to take fractional values. To manifest
the fractional solution as an integral solution the, argmax rounding scheme is used, specifically
xa = argmaxi(ya:i).

In order to compare energy values, forQP, LP, andMF5 we used the parameters tuned to
QP. For QPclique, LPclique, and MF5clique the parameters were tuned to QPclique; Table 1
gives the results for all algorithms and Figure 1 shows a decrease in energy at runtime. While
LP and LPclique could be initialized with a faster algorithm such as QP, we chose to present
the results in an ``as is"" fashion; the interested reader is encouraged to visit [2] for an example
of when LP is initialized with a faster algorithm. Qualitative methods can be seen in Figure 2.

The results given in Table 1 clearly show that the LP relaxations achieve lower energies
when compared to their QP counterparts; this is not surprising as the LP relaxation used in
this paper is known to give a tighter relaxation than QP [21]. As is consistent with our previous
work [2], LP also obtains lower energies than MF5. For consistency we also performed a set
of experiments with the parameters tuned to MF5clique and MF5, given in Appendix A.9.
In this setting, the same pattern is observed where LPclique achieves lower energies than its
QP and MF5 counterparts. In summary, QPclique achieves fast initial energy minimization
but converges to a local minimum and fails to reach the low energies achieved by LPclique.
However, while using continuous relaxations clearly achieves lower energies, it is not apparent
as to whether continuous relaxations improve segmentation accuracy. Similarly to our previous
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Table 1
Table displaying the average energy, timings, accuracy and IoU, when the parameters are tuned to QPclique

and QP. It is shown that the lowest energies are achieved by LPclique and LP. Interestingly the inclusion of
higher-order terms reduces the pixel accuracy but provides a slight increase in IoU score.

Algorithm \bfA \bfv \bfg .\bfE (\times 107) \bfT \bfi \bfm \bfe (\bfs ) \bfA \bfc \bfc (\%) \bfI \bfo \bfU (\%)

Pascal

\bfM \bfF \bffive 2.92 \bfzero .\bfseven 79.42 22.21
\bfQ \bfP 0.97 9.8 79.51 22.19
\bfL \bfP \bfzero .\bfsix \bftwo 236.5 \bfseven \bfnine .\bfeight \bffour 21.80

\bfM \bfF \bffive clique 5.20 1.2 79.44 22.22
\bfQ \bfP clique 3.78 12.4 79.54 22.21
\bfL \bfP clique \bftwo .\bfone \bfnine 254.2 79.80 \bftwo \bftwo .\bftwo \bftwo 

MSRC

\bfM \bfF \bffive 58.9 \bfzero .\bftwo \bfseven 83.79 57.16
\bfQ \bfP 29.2 1.06 \bfeight \bfthree .\bfnine \bfthree 57.80
\bfL \bfP \bfone \bfthree .\bfeight 54.0 82.93 57.30

\bfM \bfF \bffive clique 73.6 0.475 83.404 57.81
\bfQ \bfP clique 46.1 1.75 83.56 \bffive \bfseven .\bfeight \bfone 
\bfL \bfP clique \bffour \bffour .\bfone 49.3 81.49 55.81

works [2, 19], the segmentation performance is heavily dependent on the choice of parameters.
As such, further work would include investigating the learning of such parameters, possibly
in a deep-learning setting as in [38].

7. Discussion. The primary contributions of this paper are a QP and an LP relaxation
for minimizing a dense CRF with sparse higher-order potentials. Due to the use of Gaus-
sian pairwise potentials and enforcing labeling consistency in the higher-order terms, each
iteration of both algorithms exhibits a time complexity linear in the number of labels and
random variables. It is the tightness of the relaxations coupled with the sophistication of the
optimization techniques that allows both approaches to achieve lower energies than state-of-
the-art methods. Further work would include incorporating the methods into an end-to-end
learning framework [38], which would focus on achieving accurate segmentation results as well
as low energies.

Appendix A.

A.1. Optimal step size for the Frank--Wolfe algorithm. For an efficient Frank--Wolfe
algorithm, an optimal step size is essential and forms one of the three key steps defined in
Algorithm 4.1. This section details how the optimal step size is calculated; the optimal step
size to the Frank--Wolfe algorithm is achieved by solving

\delta \ast = argmin
\delta \in [0,1]

f(y + \delta (sy  - y), z+ \delta (sz  - z)),(A.1)

where

min
y,z

f(y, z) = min
y,z

\bigl( 
\bfitphi Ty + yT\bfitPsi y + cT z+ (1z  - z)TC\bfitH (1y  - y)

\bigr) 
.(A.2)
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Figure 1. Assignment energies for the sheep image from Pascal (top row) and small plane image from
MSRC (bottom row) as a function of time when the parameters are tuned to QPclique and QP. The left graphs
show the assignment energy calculated using only the unary and pairwise potentials; the right images show the
assignment energy of (3.11), which consists of the unary, pairwise, and higher-order potentials. It is worth
noting the first iteration of LPclique and LP achieves a lower energy than the final energy of QPclique and
QP, respectively, further highlighting the sophistication of the LP minimization.

Expanding out (A.1) and collecting terms of \delta yields

\delta \ast = argmin
\delta \in [0,1]

\Biggl( 
\delta 2
\Bigl( 
(sy  - y)T\bfitPsi (sy  - y) + (sz  - z)TC\bfitH (sy  - y)

\Bigr) 
+ \delta 

\Bigl( 
\bfitphi T(sy  - y) + 2(sy  - y)T\bfitPsi y + cT(sz  - z)

 - (1z  - z)TC\bfitH (sy  - y) - (sz  - z)TC\bfitH (1y  - y)
\Bigr) 

+
\Bigl( 
\bfitphi Ty + yT\bfitPsi y + cTz+ (1z  - z)TC\bfitH (1y  - y)

\Bigr) \Biggr) 
.

(A.3)
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Image MF5 QP LP MF5\bfc \bfl \bfi \bfq \bfu \bfe QP\bfc \bfl \bfi \bfq \bfu \bfe LP\bfc \bfl \bfi \bfq \bfu \bfe GT

Figure 2. Qualitative results for MSRC (top three) and Pascal (bottom three) with the parameters tuned
for QPclique and QP. For Pascal, LP achieves the most accurate segmentations; however, this is not the case
for MSRC.

This equation is quadratic in \delta and hence the minimum value has a closed form solution given
as

\delta \ast = P[0,1]

\Biggl[ 
 - 1

2

\bfitphi T(sy  - y) + 2(sy  - y)T\bfitPsi y + cT(sz  - z)

(sy  - y)T\bfitPsi (sy  - y) + (sz  - z)TC\bfitH (sy  - y)

+
1

2

(1z  - z)TC\bfitH (sy  - y) - (sz  - z)TC\bfitH (1y  - y)

(sy  - y)T\bfitPsi (sy  - y) + (sz  - z)TC\bfitH (sy  - y)

\Biggr] 
,

(A.4)

and for the Frank--Wolfe algorithm, is the optimal step size. P[0,1] indicates that if the value
of \delta \ast falls outside of the range [0, 1], then the optimal step size is truncated to lie within this
range.

A.2. Formulation of the Lagrange dual for the LP. Starting with the primal problem,
which is given as
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min
y,v,w

N\sum 
a=1

\sum 
i\in \scrL 

\phi a:iya:i +
N\sum 
a=1

N\sum 
b=1
b \not =a

\sum 
i\in \scrL 

Kab

2
vab:i +

R\sum 
p=1

Cpwp +
1

2\lambda 
| | y  - yk| | 2(A.5)

s.t. vab:i \geq ya:i  - yb:i \forall a, b \in \{ 1, . . . , N\} a \not = b \forall i \in \scrL ,
vab:i \geq yb:i  - ya:i \forall a, b \in \{ 1, . . . , N\} a \not = b \forall i \in \scrL ,
wp \geq yc:pi  - yd:pi \forall c, d \in \scrR p c \not = d \forall i \in \scrL \forall p \in \{ 1, . . . , R\} ,
wp \geq yd:pi  - yc:pi \forall c, d \in \scrR p c \not = d \forall i \in \scrL \forall p \in \{ 1, . . . , R\} ,
ya:i \geq 0 \forall a \in \{ 1, . . . , N\} \forall i \in \scrL ,\sum 

i\in \scrL 
ya:i = 1 \forall a \in \{ 1, . . . , N\} .

The associated Lagrangian can thus be written as

max
\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma 

min
y,w,v

L(\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma ,y,w,v)(A.6)

=
N\sum 
a=1

\sum 
i\in \scrL 

\phi a:iya:i +
N\sum 
a=1

N\sum 
b=1
b \not =a

\sum 
i\in \scrL 

Kab

2
vab:i +

R\sum 
p=1

Cpwp +
1

2\lambda 
| | y  - yk| | 

 - 
N\sum 
a=1

N\sum 
b=1
b \not =a

\sum 
i\in \scrL 

\alpha 1
ab:i(yb:i  - ya:i + vab:i) - 

N\sum 
a=1

N\sum 
b=1
b \not =a

\sum 
i\in \scrL 

\alpha 2
ab:i(ya:i  - yb:i + vab:i)

 - 
R\sum 

p=1

\sum 
c,d\in \scrR p

c \not =d

\sum 
i\in \scrL 

\mu 1cd:pi(yd:i  - yc:i + wp) - 
R\sum 

p=1

\sum 
c,d\in \scrR p

c \not =d

\sum 
i\in \scrL 

\mu 2cd:pi(yc:i  - yd:i + wp)

+
\sum 
a

\beta a

\Bigl( 
1 - 

\sum 
i\in \scrL 

ya:i

\Bigr) 
 - 
\sum 
a

\sum 
i\in \scrL 

\gamma a:iya:i

s.t. \alpha 1
ab:i, \alpha 

2
ab:i \geq 0 \forall a, b \in \{ 1, . . . , N\} a \not = b \forall i \in \scrL ,

\mu 1cd:pi, \mu 
2
cd:i \geq 0 \forall c, d \in \scrR p c \not = d \forall i \in \scrL \forall p \in \{ 1, . . . , R\} ,
\gamma a:i \geq 0 \forall a \in \{ 1, . . . , N\} \forall i \in \scrL .

Here \alpha 1
ab:i, \alpha 

2
ab:i, \mu 

1
cd:pi, \mu 

2
cd:pi, \beta a, and \gamma a:i are the Lagrange variables. To obtain the dual

problem, the Lagrangian needs to be minimized over the primal variables y,w,v. When the
derivatives of the Lagrangian with respect to w and v are nonzero, the problem is unbounded
and hence the minimization yields a value of  - \infty . To this extent, the derivatives of the
Lagrangian with respect to w and v must be zero for a bounded solution. These conditions are
instrumental in obtaining constraints on the Lagrange multipliers \alpha 1

ab:i, \alpha 
2
ab:i, and \mu 

1
cd:pi, \mu 

2
cd:pi.

By rearranging \nabla vL(\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma ,y,w,v) = 0 and \nabla Lw(\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma ,y,w,v) = 0 the constraints
for the Lagrange multipliers \alpha 1

ab:i, \alpha 
2
ab:i, and \mu 

1
cd:pi, \mu 

2
cd:pi are obtained and given respectively as
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\alpha 1
ab:i + \alpha 2

ab:i =
Kab

2
\forall a, b \in \{ 1, . . . , N\} a \not = b \forall i \in \scrL ,(A.7) \sum 

i\in \scrL 

\sum 
c,d

\mu 1cd:pi + \mu 2cd:pi = Cp \forall c, d \in \scrR p c \not = d \forall i \in \scrL .(A.8)

By differentiating the Lagrangian with respect to y and setting the derivative to zero, an
equation for the primal variables can be obtained. Before solving \nabla yL(\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma ,y,w,v) = 0,
it is beneficial to reorder the terms in the Lagrangian, using (A.7) and (A.8), we can arrange
the Lagrangian as follows:

L(\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma ,y,w,v) =
N\sum 
a=1

\sum 
i\in \scrL 

(\phi a:i  - \beta a  - \gamma a)ya:i +
1

2\lambda 

N\sum 
a=1

\sum 
i\in \scrL 

(ya:i  - yka:i)2 +
N\sum 
a=1

\beta a(A.9)

+
N\sum 
a=1

N\sum 
b=1
b \not =a

\sum 
i\in \scrL 

(\alpha 1
ab:i  - \alpha 2

ab:i  - \alpha 1
ba:i + \alpha 2

ba:i)ya:i

+
R\sum 

p=1

\sum 
c,d\in \scrR p

c \not =d

\sum 
i\in \scrL 

(\mu 1cd:pi  - \mu 2cd:pi  - \mu 1dc:pi + \mu 2dc:pi)yc:i.

From this, differentiating the Lagrangian with respect to y is a trivially achieved:

1

\lambda 
(ya:i  - yka:i) = - 

N\sum 
b=1
b \not =a

\sum 
i\in \scrL 

(\alpha 1
ab:i  - \alpha 2

ab:i  - \alpha 1
ba:i + \alpha 2

ba:i) + \beta a + \gamma a:i(A.10)

 - 
R\sum 

p=1

\sum 
d\in \scrR p

a\not =d

(\mu 1ad:pi  - \mu 2ad:pi  - \mu 1da:pi + \mu 2da:pi) - \phi a:i.

By utilizing the matrices introduced in (5.8), (5.9), and (5.10) this expression can be concisely
written in vector form:

y = \lambda (A\bfitalpha +U\bfitmu +B\bfitbeta + \bfitgamma  - \bfitphi ) + yk.(A.11)

Substituting this equation into the Lagrangian defined in (A.9) yields the following Lagrange
dual problem:

min
\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma 

g(\bfitalpha ,\bfitmu ,\bfitbeta ,\bfitgamma ) =
\lambda 

2
| | A\bfitalpha +U\bfitmu +B\bfitbeta + \bfitgamma  - \bfitphi | | 2 + \langle A\bfitalpha +U\bfitmu +B\bfitbeta + \bfitgamma  - \bfitphi ,yk\rangle 

(A.12)

 - \langle 1,\bfitbeta \rangle 
s.t. \gamma a:i \geq 0 \forall a \in \{ 1, . . . , N\} \forall i \in \scrL ,

\bfitalpha \in \scrA =

\biggl\{ 
\bfitalpha 

\alpha 1
ab:i + \alpha 2

ab:i =
Kab
2 , a, b \in \{ 1, . . . , N\} , a \not = b, i \in \scrL 

\alpha 1
ab:i, \alpha 

2
ab:i \geq 0, a, b \in \{ 1, . . . , N\} , a \not = b, i \in \scrL 

\biggr\} 
,

\bfitmu \in \scrU =

\Biggl\{ 
\bfitmu 

\sum 
i\in \scrL 
\sum 

c,d\in \scrR p

c \not =d

\mu 1cd:pi + \mu 2cd:pi = Cp, p \in \{ 1, . . . , R\} 

\mu 1cd:pi, \mu 
2
cd:pi \geq 0, c, d \in \scrR p, c \not = d, i \in \scrL , p \in \{ 1, . . . , R\} 

\Biggr\} 
.
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A.3. Closed form expression for \bfitbeta . Due to the unconstrained nature of \bfitbeta , the minimum
value of the dual objective g is obtained when \nabla \beta g(\bfitalpha 

\bfitt ,\bfitmu \bfitt ,\bfitbeta ,\bfitgamma ) = 0 and hence \bfitbeta can be
derived as a function of \bfitgamma . Using the fact that BTyk = 1, \nabla \bfitbeta g(\cdot ) can be written as

\nabla \bfitbeta g(\bfitalpha 
t,\bfitmu t,\bfitbeta ,\bfitgamma ) = \lambda BT (A\bfitalpha +U\bfitmu +B\bfitbeta + \bfitgamma  - \bfitphi ).(A.13)

Using BTB =MI and the fact that \lambda is a constant, an expression for \bfitbeta can be given as

\bfitbeta =  - BT

M
(A\bfitalpha \bfitt +U\bfitmu \bfitt + \bfitgamma  - \bfitphi ).(A.14)

A.4. Quadratic program for \bfitgamma a. By substituting the expression for \bfitbeta into the dual ob-
jective (5.11), a quadratic optimisation problem over \bfitgamma is formed:

min
\bfitgamma 
g(\bfitalpha t,\bfitmu t,\bfitgamma ) =

\lambda 

2
| | DA\bfitalpha +U\bfitmu + \bfitgamma  - \bfitphi )| | 2 + \langle D(A\bfitalpha +U\bfitmu + \bfitgamma  - \bfitphi ),yk\rangle (A.15)

+
BT

M
\langle 1,A\bfitalpha \bfitt +U\bfitmu \bfitt + \bfitgamma  - \bfitphi \rangle ,

where D = \bfitI  - BBT

M . Using the fact that BTyk = 1, the identity DDT = D, and removing
constant terms, the optimization problem over \bfitgamma can be simplified:

min
\bfitgamma 

1

2
\bfitgamma \bfitT \lambda D\bfitgamma + \langle \lambda D((A\bfitalpha \bfitt ) + (U\bfitmu \bfitt ) - \bfitphi ) + yk,\bfitgamma \rangle (A.16)

s.t. \bfitgamma \geq 0.

Due to the fact that \bfitD is a block diagonal, the resulting problem can be written as a sum of
quadratic programs:

min
\bfitgamma \geq 0

g(\bfitalpha t,\bfitmu t,\bfitgamma ) =
\sum 
a

min
\gamma \geq 0

1

2
\bfitgamma \bfitT 

aQa\bfitgamma a + \langle Qa((A\bfitalpha \bfitt )a + (U\bfitmu \bfitt )a  - \bfitphi a) + yk
a,\bfitgamma a\rangle (A.17)

s.t. \bfitgamma a \geq 0,

which can be optimized independently:

min
\bfitgamma \bfita 

1

2
\bfitgamma \bfitT 

aQa\bfitgamma a + \langle Qa((A\bfitalpha \bfitt 
a) + (U\bfitmu \bfitt )a  - \bfitphi a) + yk

a,\bfitgamma a\rangle (A.18)

s.t. \bfitgamma a \geq 0.

Here, \bfitgamma a denotes the vector \{ \gamma a:i| i \in \scrL \} and Q = \lambda (\bfitI  - 1
M ) \in \BbbR M\times M . Thus the resulting

optimization problem decomposes to N subproblems, with each subproblem being an M
dimensional QP.

A.5. Derivation of the conditional gradient for s\bfitalpha and s\bfitmu . As previously stated, efficient
conditional gradient computation is critical to a well-performing Frank--Wolfe algorithm. This
appendix details the method for computing the conditional gradient in linear time. Attention
is drawn to the computation of the conditional gradient s\alpha , in which a modified version of
the advanced filtering method detailed in section 3.1.4 is used. A summary is provided in
Appendix A.7 but the interested reader is referred to [2] for more information.
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Derivation of the conditional gradient for s\alpha . With the dual variables fixed at \bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t,
the conditional gradient with respect to \bfitalpha is obtained via solving the following:

s\alpha = argmin
s\alpha \in \scrA 

\langle s\alpha ,\nabla \bfitalpha g(\bfitalpha 
t,\bfitmu t,\bfitbeta t,\bfitgamma t)\rangle .(A.19)

By using (A.11), \nabla \bfitalpha g(.) is given as

\nabla \bfitalpha g(\bfitalpha 
t,\bfitmu t,\bfitbeta t,\bfitgamma t) = AT \~yt.(A.20)

Note that the feasible set \scrA is separable and can be written as \scrA =
\prod 

a,b \not =a,i\scrA ab:i, where

\scrA ab:i = \{ (\alpha 1
ab:i, \alpha 

2
ab:i)| \alpha 1

ab:i + \alpha 2
ab:i = 1

2Kab, \alpha 
1
ad:i, \alpha 

2
ab:i \geq 0\} . It is possible to exploit this

separability and compute the conditional gradient s\alpha for each Lagrange multiplier as follows:

min
s
\alpha 1
ab:i

,s
\alpha 2
ab:i

s\alpha 1
ab:i
\nabla \alpha 1

ad:i
g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t) + s\alpha 2

ab:i
\nabla \alpha 2

ad:i
g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t)(A.21)

s.t. s\alpha 1
ab:i
, s\alpha 2

ab:i
\in \scrA ab:i.

The derivatives \nabla \alpha 1
ad:i
g(\cdot ) and \nabla \alpha 2

ad:i
g(\cdot ) can be easily computed to yield the following:

\nabla \alpha 1
ab:i
g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t) = \~ytb:i  - \~yta:i,(A.22)

\nabla \alpha 2
ab:i
g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t) = \~yta:i  - \~ytb:i,(A.23)

where the reader is reminded that \~yta:i represents the current infeasible solution, as detailed
in step 6 of Algorithm 5.1. Hence, the minimum is given as

s\alpha 1
ab:i

=

\Biggl\{ 
Kab/2 if \~yta:i \geq \~ytb:i,

0 otherwise,
(A.24)

s\alpha 2
ab:i

=

\Biggl\{ 
Kab/2 if \~yta:i \leq \~ytb:i,

0 otherwise,
(A.25)

which by utilizing matrix A, introduced in (5.8), can be concisely written as

(As\alpha )a:i =
\sum 
b

(Kab1[\~y
t
a:i \leq \~ytb:i] - Kab1[\~y

t
b:i \leq \~yta:i]).(A.26)

Derivation of the conditional gradient s\mu . Similarly to s\mu the conditional gradient of \bfitmu at
\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t is obtained by via solving the following:

s\mu = argmin
s\mu \in \scrU 

\langle s\mu ,\nabla \bfitmu g(\bfitalpha 
t,\bfitmu t,\bfitbeta t,\bfitgamma t)\rangle .(A.27)

By using (A.11), \nabla \bfitmu g(\cdot ) is given as

\nabla \bfitmu g(\bfitalpha 
t,\bfitmu t,\bfitbeta t,\bfitgamma t) = UT \~yt.(A.28)
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The set \scrU can only be separated according to the number of cliques, \scrU =
\prod 

p \scrU p, where

\scrU p = \{ (\mu 1cd:pi, \mu 2cd:pi)| 
\sum 

i\in \scrL 
\sum 

c,d \mu 
1
cd:pi + \mu 2cd:pi = Cp, \mu 

1
cd:pi, \mu 

2
cd:pi \geq 0, \forall c, d \not = c,\forall i \in \scrL \} . The

conditional gradient for each set \scrU p can be written as

min
s
\mu 1
cd:pi

,s
\mu 2
cd:pi

s\mu 1
cd:pi
\nabla \mu 1

cd:pi
g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t) + s\mu 2

cd:pi
\nabla \mu 2

cd:pi
g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t)(A.29)

s.t. s\mu 1
cd:pi

, s\mu 2
cd:pi
\in \scrU p.

The derivatives \nabla \mu 1
cd:pi

g(.) and \nabla \mu 2
cd:pi

g(.) can be easily computed to yield the following:

\nabla \mu 1
cd:pi

g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t) = \~ytd:pi  - \~ytc:pi,(A.30)

\nabla \mu 2
cd:pi

g(\bfitalpha t,\bfitmu t,\bfitbeta t,\bfitgamma t) = \~ytc:pi  - \~ytd:pi,(A.31)

where the reader is reminded that \~yta:i represents the current infeasible solution, as detailed in
step 6 of Algorithm 5.1. Given s\mu 1

cd:pi
, s\mu 2

cd:pi
\in \scrU p, the conditional gradients are thus given as

s\mu 1
cd:pi

=

\Biggl\{ 
Cp/2 if \~ytc:pi = maxc\in p,i\in \scrL \~ytc:pi and \~ytd:i = mind\in p,i\in \scrL \~ytd:pi,

0 otherwise,
(A.32)

s\mu 2
cd:pi

=

\Biggl\{ 
Cp/2 if \~ytc:pi = minc\in p,i\in \scrL \~ytc:pi and \~ytd:i = maxd\in p,i\in \scrL \~ytd:pi,

0 otherwise.
(A.33)

By utilizing the matrix U the conditional gradient of s\mu can be written as

(Us\mu )c:pi =

\left\{     
Cp if \~ytc:pi \leq \~ytd:pj \forall d \in p \forall j \in \scrL ,
 - Cp if \~ytc:pi > \~ytd:pj \forall d \in p \forall j \in \scrL ,
0 otherwise.

(A.34)

A.6. Optimal step size. We need to find the step size \delta that gives the maximum decrease
in the objective function g given the descent direction st. This can be formalized as the
following optimization problem:

min
\delta 

\lambda 

2

\bigm\| \bigm\| A\bfitalpha t + \delta (Ast\alpha  - A\bfitalpha t) +U\bfitmu t + \delta (Ust\mu  - U\bfitmu t) +B\bfitbeta t + \bfitgamma t  - \bfitphi t
\bigm\| \bigm\| 2(A.35)

+
\Bigl\langle 
A\bfitalpha t + \delta (Ast\alpha  - A\bfitalpha t) +U\bfitmu t + \delta (Ust\mu  - U\bfitmu t) +B\bfitbeta t + \bfitgamma t  - \bfitphi t,yk

\Bigr\rangle 
 - \langle 1,\bfitbeta t\rangle 

s.t. \delta \in [0, 1] .

Note that the above function is optimized over the scalar variable \delta and the minimum is
attained when the derivative is zero. Hence setting the derivate to zero,
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0 =
\Bigl\langle 
yk,Ast\alpha  - A\bfitalpha t +Ust\mu  - U\bfitmu t

\Bigr\rangle (A.36)

+\lambda 
\bigl\langle 
(1 - \delta )A\bfitalpha t + \delta Ast\alpha + (1 - \delta )U\bfitmu t + \delta Ust\mu +B\bfitbeta t + \bfitgamma t  - \bfitphi t,Ast\alpha  - A\bfitalpha t +Ust\mu  - U\bfitmu t

\bigr\rangle 
\delta =
\langle Ast\alpha  - A\bfitalpha t +Ust\mu  - U\bfitmu t, \lambda 

\bigl( 
A\bfitalpha t +U\bfitmu t +B\bfitbeta t + \bfitgamma t  - \bfitphi t + yk

\bigr\rangle 
\lambda \| \langle Ast\alpha  - A\bfitalpha t +Ust\mu  - U\bfitmu t\| 2

,

\delta = P[0,1]

\Biggl[ 
\langle A\bfitalpha t +U\bfitmu t  - Ast\mu  - Ust\alpha ,y

t\rangle 
\lambda | | A\bfitalpha t +U\bfitmu t  - Ast\mu  - Ust\alpha | | 2

\Biggr] 
.

In fact, if the optimal \delta is out of the interval [0, 1] it is simply projected back.

A.7. Filtering method appendix.
Original filtering algorithm. Let us first introduce some notation below. We denote the set

of lattice points of the original permutohedral lattice with \scrP and the neighboring feature points
of lattice point l by N(l). Also we denote the neighboring lattice points of a feature point a
by N(a). In addition, the barycentric weight between the lattice point l and feature point b is
denoted with wlb. Furthermore, the value at feature point b is denoted with vb and the value at
lattice point l is denoted with vl. The pseudocode of the algorithm is given in Algorithm A.1

Algorithm A.1. Original filtering algorithm [1]

Require: Permutohedral lattice \scrP 
for all l \in P do

vl \leftarrow 
\sum 

b\in N(l)wlb vb  \triangleleft Splatting

V
\prime \leftarrow k \otimes V  \triangleleft Blurring

for all a \in \{ 1, . . . , N\} do
v\prime a \leftarrow 

\sum 
l\in N(a)wla v

\prime 
l  \triangleleft Slicing

Modified filtering algorithm. As mentioned in the main paper the interval [0, 1] is discretized
into H discrete bins. Note that each bin h \in \{ 0 . . . H\} is associated with a probability interval
which is identified as

\bigl[ 
h

H - 1 ,
h+1
H - 1

\bigr) 
. To this end, the bin hb of the feature point b satisfy the

following inequality:
\bigl[ 

hb
H - 1 \leq yb <

hb+1
H - 1

\bigr] 
.

Furthermore, at the splatting step, the values vb are accumulated to its neighboring lattice
point only if the lattice point is above or equal to the feature point level. Formally, the
barycentric interpolation at lattice point l at level h can be written as

(A.37) vl:h =
\sum 

b\in N(l)
h\geq hb

wlb vb =
\sum 

b\in N(l)

wlb vb1

\biggl[ 
h

H  - 1
\geq yb

\biggr] 
,
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where hb is the level of feature point b and wlb is the barycentric weight between lattice point
l and feature point b. Then blurring is performed independently at each discrete level h.
Finally, at the slicing step, the resulting values are interpolated at the level of the feature
point. Our modified algorithm is given in Algorithm A.2.

Algorithm A.2. Modified filtering algorithm

Require: Permutohedral lattice \scrP , discrete levels H
for all l \in \scrP do  \triangleleft Splatting

for all h \in \{ 0 . . . H  - 1\} do
vl:h \leftarrow 

\sum 
b\in N(l)wlb vb1

\Bigl[ 
h

H - 1 \geq yb
\Bigr] 

for all h \in \{ 0 . . . H  - 1\} do
V

\prime 
h \leftarrow k \otimes V h  \triangleleft Blurring

for all a \in \{ 1, . . . , N\} do  \triangleleft Slicing

v\prime a \leftarrow 
\sum 

l\in N(a)

\sum H - 1
h=0 wla v

\prime 
l:h1

\Bigl[ 
h

H - 1 \leq ya <
h+1
H - 1

\Bigr] 
Note that the above algorithm is given for the 1[ya \geq yb] constraint; however, it is fairly

easy to modify it for the 1[ya \leq yb] constraint. In particular, one needs to change the interval
identified by the bin h to

\bigl( 
h - 1
H - 1 ,

h
H - 1

\bigr] 
. Using this fact, one can easily derive the splatting and

slicing equations for the 1[ya \leq yb] constraint.

A.8. Cross-validated parameters. A table of the cross validated parameters is given in
Table 2.

A.9. Additional results. In this section we present the results for when the algorithms
are tuned to MF5clique and MF, displayed in Table 3. As is consistent with our previous
results, it can be seen that QP achieves lower energies than MF5 but fails to reach the low
energies of LP. A similar pattern can be seen for the higher-order potentials, where LPclique

obtains lower energies than QPclique. Visual results can be seen in Figure 3.

Table 2
Table of cross-validated parameters for each of the above algorithms.

Algorithm \sigma (3) w(2) \sigma (1) \sigma (2) w(1) cliquesize \Gamma \eta 

MSRC

\bfM \bfF \bffive 4.10 77.047 47.79 4.69 100 - - -
\bfQ \bfP 60.5 6.53 22.89 48.73 4.13 - - -

\bfM \bfF \bffive clique 6.53 4.46 50 9.74 11.56 10 54.88 876.08
\bfQ \bfP clique 3.74 17.67 39.76 9.49 54.56 100 19.71 109.0

Pascal

\bfM \bfF \bffive 1.00 29.19 17.82 6.14 32.56 - - -
\bfQ \bfP 1.00 100 19.11 6.08 55.19 - - -

\bfM \bfF \bffive clique 1.20 76.38 16.32 38.10 1.45 27 20.71 467.36
\bfQ \bfP clique 1.00 99.53 13.30 7.89 100.00 97 100 139.70
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Table 3
Table displaying the average energy, timings, accuracy, and IoU when the parameters are tuned to MF5clique

and MF5. It is shown that the lowest energies are achieved by LPclique and LP. Interestingly, LP obtains the
greatest segmentation accuracy for Pascal, despite tuning the parameters for MF5clique and MF5.

Algorithm \bfA \bfv \bfg .\bfE (\times 107) \bfT \bfi \bfm \bfe (\bfs ) \bfA \bfc \bfc (\%) \bfI \bfo \bfU (\%)

Pascal

\bfM \bfF \bffive 5.26 \bfzero .\bfthree \bffive 79.54 \bftwo \bftwo .\bftwo \bfthree 
\bfQ \bfP 4.13 1.06 79.63 22.23
\bfL \bfP \bfone .\bfone \bfseven 54.0 \bfseven \bfnine .\bfeight \bffour 21.91

\bfM \bfF \bffive clique 5.20 1.75 79.26 22.22
\bfQ \bfP clique 3.78 1.75 79.25 22.21
\bfL \bfP clique \bftwo .\bfone \bfnine 79.67 79.67 21.35

MSRC

\bfM \bfF \bffive 17.7 \bfzero .\bfthree \bfseven 83.79 57.16
\bfQ \bfP 12.2 0.58 83.93 57.80
\bfL \bfP \bfzero .\bfthree \bfnine 67.9 82.93 57.30

\bfM \bfF \bffive clique 0.34 0.62 84.30 \bfsix \bfzero .\bffive \bfthree 
\bfQ \bfP clique 0.30 1.13 \bfeight \bffour .\bffour \bfone 60.32
\bfL \bfP clique \bfzero .\bfone \bftwo 46.9 81.89 55.66

(a) Image (b) MF5 (c) QP (d) LP (e) MF5 (f) QP (g) LP (h) GT

Figure 3. Qualitative results with the parameters tuned for \bfM \bfF \bffive clique and \bfM \bfF \bffive . As can be clearly seen,
even though the parameters have been tuned to \bfM \bfF \bffive , the \bfL \bfP algorithm produces competitive segmentations
when compared to \bfM \bfF \bffive .
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