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Real-Time Highly Accurate Dense Depth on a
Power Budget Using an FPGA-CPU Hybrid SoC
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Abstract—Obtaining highly accurate depth from stereo images
in real time has many applications across computer vision
and robotics, but in some contexts, upper bounds on power
consumption constrain the feasible hardware to embedded plat-
forms such as FPGAs. Whilst various stereo algorithms have
been deployed on these platforms, usually cut down to better
match the embedded architecture, certain key parts of the more
advanced algorithms, e.g., those that rely on unpredictable access
to memory or are highly iterative in nature, are difficult to deploy
efficiently on FPGAs, and thus the depth quality that can be
achieved is limited. In this brief, we leverage an FPGA-CPU chip
to propose a novel, sophisticated, stereo approach that combines
the best features of semi-global matching and ELAS-based meth-
ods to compute highly accurate dense depth in real time. Our
approach achieves an 8.7% error rate on the challenging KITTI
2015 dataset at over 50 frames/s, with a power consumption of
only 5 W.

Index Terms—Heterogeneous, FPGA, real-time, stereo, depth.

I. INTRODUCTION

OBTAINING information about the 3D structure of a
scene is important for many computer vision and

robotics applications, e.g., 3D scene reconstruction [1]–[3],
camera relocalisation [4]–[6], navigation and obstacle avoid-
ance [7]. Often, this information will be obtained in the form of
a depth image, and various options for acquiring such images
exist. Passive approaches, which rely only on one or more
image sensors, are popular due their low cost, low weight
and size, lack of active/moving components, ability to work

Manuscript received February 25, 2019; accepted March 25, 2019. Date
of publication April 3, 2019; date of current version April 30, 2019.
This work was supported in part by Innovate U.K./CCAV Project under
Grant 103700 (StreetWise), in part by Engineering and Physical Sciences
Research Council (EPSRC) under Grant EP/M013774/1 (Seebibyte) and
Grant EP/N019474/1 (EPSRC/MURI), in part by the Royal Academy of
Engineering, and in part by FiveAI. This brief was recommended by Associate
Editor W.-H. Peng. (Corresponding author: Oscar Rahnama.)

O. Rahnama is with the Department of Engineering Science, University of
Oxford, Oxford OX1 3PJ, U.K., and also with FiveAI Ltd., Bristol BS1 6QS,
U.K. (e-mail: oscar@robots.ox.ac.uk).

T. Cavallari, S. Golodetz, and S. Walker are with FiveAI Ltd.,
Bristol BS1 6QS, U.K.

A. Tonioni was with the Department of Engineering Science, University of
Oxford, Oxford OX1 3PJ, U.K. He is now with the Department of Computer
Science and Engineering, University of Bologna, 40126 Bologna, Italy.

T. Joy and P. H. S. Torr are with the Department of Engineering Science,
University of Oxford, Oxford OX1 3PJ, U.K.

L. Di Stefano are with the Department of Computer Science and
Engineering, University of Bologna, 40126 Bologna, Italy.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2019.2909169

at longer ranges, deployability in a wider range of operating
environments and lack of interference. Among them, binocu-
lar stereo relies on a pair of synchronised cameras to acquire
the same scene from two different points of view. Given the
two frames, a dense and reliable depth map can be computed
by finding correspondences between the pixels in the two
images [9]. State-of-the-art algorithms for this problem usually
rely on costly global image optimisations or on massive convo-
lutional neural networks that involve significant computational
costs, making them hard to deploy on resource-limited systems
such as embedded devices [10]. Two popular solutions offering
a good trade-off between speed and accuracy are Semi-Global
Matching (SGM) [11] and ELAS [8]. SGM computes initial
matching hypotheses by comparing patches around pixels in
the left and right images, then approximates a costly image-
wide smoothness constraint with the sum of several directional
minimisations over the disparity range. By contrast, ELAS
first identifies a set of sparse but reliable correspondences to
provide a coarse approximation of the scene geometry, then
uses them to define slanted plane priors that guide the final
dense matching stage. We propose a novel stereo pipeline that
efficiently combines the predictions of these two algorithms,
achieving high accuracy and overcoming some of the limita-
tions of each algorithm. First, we use multiple passes of a fast
SGM variant [12], left-right consistency checking and deci-
mation to obtain a sparse but reliable set of correspondences.
Then, we use these as the support points for ELAS to obtain
disparity priors from slanted planes. Finally, we incorporate
these disparity priors into a final SGM-based optimisation
(again based on [12]) to achieve dense predictions with high
accuracy.

Our pipeline targets not only accuracy, but also speed,
aiming for real-time execution (30 FPS) on an embedded plat-
form. Recent works have deployed SGM successfully in real
time both on multi-core CPUs [13] and GPUs [14], [15],
but in real-world scenarios, power constraints often force
us to rely on low-power devices like FPGAs. The devel-
opment of reliable stereo pipelines for FPGAs is an active
research field [10], [16]–[22], with recent works proposing
FPGA-friendly variants of SGM [15], [23]–[27] or ELAS [28].
However, FPGA implementations of stereo algorithms usually
perform some kind of approximation to deal with the limited
resources available and to traverse the pixels in raster order.

We show how some of the intrinsic limitations of a pure
FPGA-based implementation can be mitigated by appropri-
ately leveraging a new-generation hybrid system on a chip
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Fig. 1. Overview of our approach. First, we use Fast R3SGM (see Section II-A1) to compute disparity images for the input stereo pair (in raster and
reverse-raster order). We then flip the right result and perform a left-right consistency check to obtain an accurate but sparse disparity map for the left input
image (see Section II-A2). Next, as ELAS [8] does, we perform support checking (see Section II-B1) to remove points whose disparities appear abnormal
relative to neighbouring pixels: this yields a sparser support point image that contains only points with confident disparities. This support point image is
subsequently used in multiple ways: (i) it is further sparsified via a redundancy check, producing sparse anchors that are then used to generate plane disparity
priors through a triangulation and interpolation process (see Section II-B2); (ii) it is split into a grid where, for each grid cell, a binary vector representing the
set of viable disparities is computed (see Section II-B3). Finally, the support point image is combined with the outputs of (i) and (ii) in a disparity optimisation
that combines R3SGM and ELAS to produce a dense disparity image (see Section II-C). We then median filter this image for robustness to produce the final
result.

(SoC), e.g., the Xilinx ZCU104, which combines both an
ARM processor and an FPGA, with shared direct memory
access, into a single chip. Recently, several works have
explored the deployment of stereo methods on such platforms:
both [19] and [26] use the CPU mainly for handling com-
munication and controlling peripherals, while [28] actively
leverages the CPU to execute iterative steps that would be
infeasible on an FPGA (e.g., Delaunay triangulation). Similar
to [28], we propose to actively use the elaboration capability of
the built-in CPU to handle I/O and to execute part of the ELAS
pipeline, while deploying all the other elaboration blocks on
the FPGA. We show how our pipeline outperforms previously
published works by achieving an 8.7% error rate on the chal-
lenging KITTI 2015 dataset [29], [30], while still operating
with real-time performance and low power consumption.

II. METHOD

Our overall pipeline is shown in Figure 1. It consists of
several different components which we describe in the sub-
sections that follow. The system leverages both parts of the
FPGA-CPU hybrid SoC to achieve optimal results. Tasks that
are very data intense, but which access that data in a pre-
dictable manner, are run on dedicated FPGA accelerators to
benefit from their parallel processing capability. In addition,
they can take advantage of the FPGA accelerators’ internal
ability to pipeline data so that multiple inputs are processed
together in staggered fashion. Tasks that are very dynamic and
unpredictable, which often involve many unforeseen or ran-
dom accesses to external memory, are run on the CPU since
they benefit both from the significantly faster clock frequency
of the CPU as well as its ability to access memory in constant
time (CPU memory accesses can be sped up via appropriate
use of the cache). To minimise the amount of FPGA resources
used by our method, as well as allow the deployment of the

design on a real platform, we reuse some accelerators whilst
buffering intermediate results in RAM. We will detail which
blocks are reused in our final design in the rest of this section.

A. Sparse Disparity Computation

1) Fast R3SGM: Initially, we use a modified version
of R3SGM [12] (a memory-efficient adaptation of classic
SGM [11] to FPGAs), which we call Fast R3SGM, to compute
disparity images for input stereo pairs. We process each input
pair twice: once in raster order, and once in reverse raster
order, yielding two disparity images overall. The advantage
of this is that the raster and reverse-raster passes of R3SGM
will base the disparity for each pixel on the disparities of pix-
els in different regions of influence: this means that we can
later check for consistency between the two, improving the
accuracy of our results.

The original version of R3SGM [12] aggregated contri-
butions to the disparity of each pixel along four different
scanlines: three above the pixel, and one to the left. However,
as mentioned in [12], using the left scanline severely lim-
its the overall throughput of the system (one disparity value
is output every three clock cycles) due to a blocking depen-
dency between immediately successive pixels. To avoid this,
we modify the approach to use only the scanlines above the
pixel, allowing us to output one disparity per clock cycle. The
mild loss in accuracy this causes is more than compensated
for by the improvements yielded by the rest of our pipeline.

In our implementation, we deploy a single instance of the
Fast R3SGM block, together with the associated median fil-
tering and L/R consistency checking blocks. We first feed the
blocks with the raster-order stereo pair, then with the reverse-
raster-order pair, storing the disparities resulting from each
pair back into RAM between the computations. For further
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architectural details of the internal structure of the main
blocks, we refer the interested reader to [12].

2) Consolidating Consistency Checking: Each pass of Fast
R3SGM outputs a disparity map that has been checked for
consistency using the first input as the reference image [12].
The raster pass outputs a disparity map for the left input image;
the reverse-raster pass outputs one for the (reversed) right input
image. Due to the streaming nature of the disparity computa-
tion, however, the results suffer from a raster or reverse-raster
scan bias, i.e., the disparity value of any given pixel is encour-
aged to be similar to those computed before it. To reconcile
the inconsistencies between these two disparity maps, we per-
form a further left-right consistency check, which yields an
accurate but sparse disparity map for the left input image as
its result (see Figure 1). The memory access pattern of such
a process is problematic, however, as the first pixels in the
left disparity map need to be checked against the last pixels
in the right disparity map. To overcome this problem, we first
reverse the latter image on the CPU (since this is an inher-
ently sequential process, it benefits from the higher clock rate
provided by the ARM core), then perform a standard left-right
consistency check (on the programmable logic).

B. Generation of Priors

Using the sparse disparity map output by the consolidat-
ing consistency check, we adapt the ELAS method described
in [8] to generate priors that can be fed into a combined
disparity optimisation process (see Section II-C) to produce
a more accurate and dense final result. The prior genera-
tion process begins by taking the disparity map produced by
Section II-A2 as input and producing a support point image
(see Section II-B1) containing sparse but confident dispari-
ties. The support points are then fed to two more blocks
before being used by the final disparity optimisation process:
(i) a redundancy checking and disparity prior generation block,
which first computes a sparse anchor points image and then
triangulates such anchors to generate disparity priors for all
pixels in the image (see Section II-B2); and (ii) a grid vec-
tor extraction block that divides the support points image into
a grid and then determines the set of possible disparities for
each cell (see Section II-B3).

1) Support Checking: To produce the support point image,
we filter the sparse disparity map to remove any pixels whose
disparities are not sufficiently supported by the pixels in their
immediate neighbourhoods (in practice, a square window cen-
tred on each pixel). For a pixel to be considered “supported”,
there must exist, in its neighbourhood, another predefined
number of pixels that have very similar disparity values (e.g.,
at least 10 pixels within a 5×5 window that differ by less than
5 from that of the center pixel). The disparities of all other
pixels are marked as invalid. The resulting support point image
will evidently be sparser than the original disparity map, since
we have kept only those pixels about whose disparities we can
be reasonably confident.

2) Redundancy Checking and Disparity Prior Generation:
To produce the anchor image, we further sparsify the support
point image produced in Section II-B1 by processing it in

raster order and invalidating any pixel whose disparity has
already been seen within a window behind and above the pixel.
Unlike [28], which for each pixel (x, y) used a window of

{(x, y − δy) : 0 < δy ≤ 2K} ∪ {(x − δx, y) : 0 < δx ≤ 2K},
where K was set to 5, which only encompassed points in the
same row or same column as the pixel being processed, here
we use a larger window of

{(x + δx, y + δy) : −K ≤ δx ≤ K,−2K ≤ δy < 0}
∪ {(x − δx, y) : 0 < δx ≤ K}.

This has the effect of creating a sparser anchor image than
that used in [28], significantly speeding up the subsequent
Delaunay triangulation process. Whilst this inevitably reduces
the granularity of the generated triangles, its impact on the
quality of the subsequent depth priors is minor, as shown
in [28]. As the Delaunay triangulation process was additionally
shown to be a key bottleneck, the advantage of reducing the
number of points to triangulate (thus reducing CPU process-
ing time) outweighs the marginal benefit in accuracy obtained
with more fine-grained triangles.

Finally, to produce the disparity priors, we first move the
anchor points image back to RAM, then perform a Delaunay
triangulation of those points, and finally compute the disparity
of each non-anchor point located within one of the Delaunay
triangles by interpolating the disparities of the triangle’s ver-
tices. The entirety of this process is performed by the CPU,
since the triangulation and interpolation algorithms are inher-
ently non-sequential in their memory access patterns, and can
benefit from both the availability of memory caches and the
higher speed of the ARM core.

3) Grid Vector Extraction: The final input to the combined
disparity optimisation we describe in Section II-C is a set of
binary grid vectors used to determine which disparities are
suitable for each part of the image. To produce such vectors,
we first divide the support point image into a regular grid (with
cells of size 50 × 50 in our implementation). Then, for each
cell, we find the valid disparity values within it, and store both
those and their neighbouring disparities (±1) into a binary grid
vector for that cell. See [28] for more details.

C. Combined Disparity Optimisation

Finally, we perform a combined disparity optimisation that
takes into account not only the original pair of input images,
but also the plane priors, grid vectors and support points.
Essentially, we perform Fast R3SGM, as in Section II-A1
(once again reusing the corresponding FPGA block), but first
modifying the cost vectors of the pixels to take the various
different priors we have available into account.

The disparities of the support points are fixed throughout
and not recomputed. Every cost vector element for a support
point (each of which corresponds to a specific disparity) is
set to a large arbitrary value, except for the element corre-
sponding to the disparity of the support point, which is set
to zero instead. Through the Fast R3SGM smoothing process,
pixels near the support point will then naturally be encour-
aged to adopt disparities similar to that of the support point
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TABLE I
THE QUANTITATIVE RESULTS OF OUR APPROACH, IN COMPARISON TO STATE-OF-THE-ART REAL-TIME METHODS, ON THE STEREO 2015 SUBSET OF

THE KITTI BENCHMARK [29], [30]. AS IN THE OFFICIAL EVALUATION PROTOCOL, WE REPORT THE PERCENTAGE OF ACCURATE DISPARITIES (USING

A THRESHOLD OF < 3 DISPARITY VALUES OR 5%, WHICHEVER IS GREATER) AFTER AN INTERPOLATION STEP (MEANT TO ASSIGN A DISPARITY

VALUE TO ALL PIXELS IN THE IMAGE), ON RESPECTIVELY THE SUBSETS OF BACKGROUND, FOREGROUND AND ALL PIXELS. WE ADDITIONALLY

REPORT THE DENSITY OF VALID DISPARITY VALUES. AS CAN BE SEEN, WITH THE EXCEPTION OF R3SGM [12], ALL METHODS PROVIDE ALMOST

DENSE DISPARITY IMAGES, THEREFORE THE EXTRA INTERPOLATION STEP MANDATED BY THE BENCHMARK IS NOT STRICTLY REQUIRED TO OBTAIN

USABLE DISPARITY IMAGES. FINALLY, FOR EACH METHOD, WE REPORT THE TYPICAL TIME REQUIRED TO PROCESS A STEREO PAIR, AS WELL AS

THE APPROXIMATE POWER CONSUMPTION OF THE PLATFORM USED. WHILST ALL APPROACHES CAN PROCESS IMAGES IN REAL-TIME, ONLY THE

FPGA-BASED METHODS (OURS AND [12]) CAN DO SO IN A POWER-EFFICIENT MANNER, WITH OURS PROVIDING ≈ 12% ADDITIONAL ACCURACY

AND MUCH HIGHER DENSITY W.R.T. [12], AT THE EXPENSE OF SLIGHTLY HIGHER POWER USAGE AND PROCESSING TIME

itself, with the influence of this effect attenuating with dis-
tance. To take the disparity prior for each pixel into account,
we decrease those elements of its cost vector that correspond
to disparities close to the prior (more specifically, we super-
impose a negative Gaussian over the cost vector, centred on
the prior, and decrease the relevant elements within a cer-
tain radius accordingly). To make use of the grid vectors, we
set all elements of the cost vectors for the pixels within each
grid cell that do not appear in the grid vector for that cell to
an arbitrarily large value, thus strongly encouraging them not
to be selected. As with the effects of the support points, these
cost vector modifications are similarly propagated by the Fast
R3SGM smoothing process.

At the end of this process, we perform a final median filter
on the Fast R3SGM result to further mitigate impulsive noise,
ultimately yielding a dense, accurate disparity map.

III. RESULTS

We developed the FPGA accelerators using the Vivado
High-Level Synthesis (HLS) tool, as this approach was
quicker, and allowed for greater flexibility and reusability of
the components. We deployed the system on a Xilinx ZCU104
board, and all of the power consumption results that we present
for our method were estimated by the Xilinx Vivado tool.
Although the values provided by the tool are only approx-
imations, they still provide an accurate sense of the power
requirements.

We quantitatively evaluate the disparities produced
by our approach on the standard KITTI 2015 stereo
benchmark [29], [30]. In Table I, we report the average
percentages of pixel disparities estimated correctly for
background, foreground and all pixels, respectively. We
also report average runtimes and power consumptions for
both our and alternative methods that achieve real-time
processing speeds on the images used in the benchmark
(which have a resolution of 1242 × 375). Whilst the proposed
method results in slightly less accurate disparities than the
DeepCostAggr [31] and CSCT-SGM-MF [15] methods, it is
worth pointing out that both [15], [31] rely on powerful GPUs
to achieve real-time processing speed, whereas our approach
does so in a much more power-efficient manner, relying only

TABLE II
RESOURCES (PROGRAMMABLE LOGIC UNITS), POWER (AS ESTIMATED

BY THE XILINX VIVADO TOOL) AND CLOCK FREQUENCIES USED BY THE

PROPOSED APPROACH, WHEN DEPLOYED ON A XILINX ZCU104, IN

COMPARISON TO THE FPGA-BASED METHODS FROM WHICH

WE DRAW INSPIRATION

on a hybrid FPGA-CPU board. We also compare favourably
to R3SGM [12], the underlying method on which we base
our approach for the estimation of the initial disparities (see
Section II-A1), providing more accurate and denser results
at a similar speed and with similar power consumption.
We similarly outperform the FPGA variant of ELAS [28],
achieving a lower error rate at a much higher speed, and with
similarly low power consumption.

In Table II, we detail the hardware resources used by
our approach when deployed on our Xilinx ZCU104 board.
We break down the amount of logic resources used in the
FPGA chip, as well as the power consumption of both the
programmable logic and the ARM core. We also report the
amount of resource and power used by the methods from
which we draw inspiration [12], [28]. Notably, despite making
full use of many of the logic resources available on the FPGA,
our power consumption remains very low. More specifically,
breaking down the resource utilization of the programmable
logic amongst the different accelerators, the largest share is
taken by the Fast R3SGM block which, alone, consumes about
65% of the FPGA power. The next most resource heavy blocks
are the ones which perform the median filtering of the dis-
parities, which require approximately 30% of the power. The
remaining blocks have much smaller resource requirements,
which altogether account for the remaining 5% of the power.
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IV. CONCLUSION

In this brief, we have presented a novel approach to com-
puting depth from stereo images on a hybrid FPGA-CPU chip.
Our approach uses an adapted version of ELAS [8] to refine
the initial sparse disparity map produced by a fast variant of
R3SGM [12], and achieves an 8.7% error rate on the chal-
lenging KITTI 2015 dataset [29], [30]. By fully leveraging
the capabilities of our hybrid board, we are able to produce
highly accurate dense depth at over 50 FPS, with a power
consumption of only 5W, making our approach attractive for
applications in mobile, real-time computing.
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